Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Kristian Strommen

Senior Postdoctoral Researcher

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Atmospheric processes
kristian.strommen@physics.ox.ac.uk
Telephone: 01865 (2)82426
Robert Hooke Building, room S40
My website
  • About
  • Publications

Progress towards a probabilistic Earth system model: examining the impact of stochasticity in the atmosphere and land component of EC-Earth v3.2

Geoscientific Model Development European Geosciences Union 12 (2019) 3099-3118

Authors:

Kristian Strommen, Hannah Christensen, D Macleod, S Juricke, TN Palmer

Abstract:

We introduce and study the impact of three stochastic schemes in the EC-Earth climate model: two atmospheric schemes and one stochastic land scheme. These form the basis for a probabilistic Earth system model in atmosphere-only mode. Stochastic parametrization have become standard in several operational weather-forecasting models, in particular due to their beneficial impact on model spread. In recent years, stochastic schemes in the atmospheric component of a model have been shown to improve aspects important for the models long-term climate, such as El Niño–Southern Oscillation (ENSO), North Atlantic weather regimes, and the Indian monsoon. Stochasticity in the land component has been shown to improve the variability of soil processes and improve the representation of heatwaves over Europe. However, the raw impact of such schemes on the model mean is less well studied. It is shown that the inclusion of all three schemes notably changes the model mean state. While many of the impacts are beneficial, some are too large in amplitude, leading to significant changes in the model's energy budget and atmospheric circulation. This implies that in order to maintain the benefits of stochastic physics without shifting the mean state too far from observations, a full re-tuning of the model will typically be required.
More details from the publisher
Details from ORA

The Sensitivity of Euro-Atlantic Regimes to Model Horizontal Resolution

Geophysical Research Letters American Geophysical Union (2019)

Authors:

K Strommen, I Mavilia, S Corti, M Matsueda, P Davini, J von Hardenberg, P-L Vidale, R Mizuta

Abstract:

There is growing evidence that the atmospheric dynamics of the Euro-Atlantic sector during winter is driven in part by the presence of quasi-persistent regimes. However, general circulation models typically struggle to simulate these, with e.g. an overly weakly persistent blocking regime. Previous studies have showed that increased horizontal resolution can improve the regime structure of a model, but have so far only considered a single model with only one ensemble member at each resolution, leaving open the possibility that this may be either coincidental or model-dependent. We show that the improvement in regime structure due to increased resolution is robust across multiple models with multiple ensemble members. However, while the high resolution models have notably more tightly clustered data, other aspects of the regimes may not necessarily improve, and are also subject to a large amount of sampling variability that typically requires at least three ensemble members to surmount.
More details
More details from the publisher
Details from ORA
More details
Details from ArXiV

Progress Towards a Probabilistic Earth System Model: Examining The Impact of Stochasticity in EC-Earth v3.2

Geoscientific Model Development European Geosciences Union (2019)

Authors:

Kristian Strommen, HM Christensen, D Macleod, S Juricke, T Palmer
More details from the publisher
Details from ORA
More details

Signal and noise in regime systems: A hypothesis on the predictability of the North Atlantic Oscillation

Quarterly Journal of the Royal Meteorological Society Royal Meteorological Society 145:718 (2018) 147-163

Authors:

Kristian Strommen, Tim Palmer

Abstract:

Studies conducted by the UK Met Office reported significant skill in predicting the winter North Atlantic Oscillation (NAO) index with their seasonal prediction system. At the same time, a very low signal‐to‐noise ratio was observed, as measured using the “ratio of predictable components” (RPC) metric. We analyse both the skill and signal‐to‐noise ratio using a new statistical toy model, which assumes NAO predictability is driven by regime dynamics. It is shown that if the system is approximately bimodal in nature, with the model consistently underestimating the level of regime persistence each season, then both the high skill and high RPC value of the Met Office hindcasts can easily be reproduced. Underestimation of regime persistence could be attributable to any number of sources of model error, including imperfect regime structure or errors in the propagation of teleconnections. In particular, a high RPC value for a seasonal mean prediction may be expected even if the model's internal level of noise is realistic.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The impact of stochastic parametrisations on the representation of the Asian summer monsoon

CLIMATE DYNAMICS 50:5-6 (2018) 2269-2282

Authors:

K Strommen, HM Christensen, J Berner, TN Palmer
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet