Detecting Phase Coherence of 2D Bose Gases via Noise Correlations.
Phys Rev Lett 134:18 (2025) 183407
Abstract:
We measure the noise correlations of two-dimensional (2D) Bose gases after free expansion and use them to characterize the in situ phase coherence across the Berezinskii-Kosterlitz-Thouless (BKT) transition. The noise correlation function features a characteristic spatial oscillatory behavior in the superfluid phase, which gives direct access to the superfluid exponent. This oscillatory behavior vanishes above the BKT critical point, as we demonstrate for both single-layer and decoupled bilayer 2D Bose gases. Our Letter establishes noise interferometry as an important general tool to probe and identify many-body states of quantum gases, extending its application to previously inaccessible correlation properties in multimode systems.CNN-Based Vortex Detection in Atomic 2D Bose Gases in the Presence of a Phononic Background
Machine Learning: Science and Technology IOP Publishing (2025)
Abstract:
<jats:title>Abstract</jats:title> <jats:p>Quantum vortices play a crucial role in both equilibrium and dynamical phenomena in two-dimensional (2D) superfluid systems. Experimental detection of these excitations in 2D ultracold atomic gases typically involves examining density depletions in absorption images, however the presence of a significant phononic background renders the problem challenging, beyond the capability of simple algorithms or the human eye. Here, we utilize a convolutional neural network (CNN) to detect vortices in the presence of strong long- and intermediate-length scale density modulations in finite-temperature 2D Bose gases. We train the model on datasets obtained from ab initio Monte Carlo simulations using the classical-field method for density and phase fluctuations, and Gross-Pitaevskii simulation of realistic expansion dynamics. We use the model to analyze experimental images and benchmark its performance by comparing the results to the matter-wave interferometric detection of vortices, confirming the observed scaling of vortex density across the Berezinskii-Kosterlitz-Thouless (BKT) critical point. The combination of a relevant simulation pipeline with machine-learning methods is a key development towards the comprehensive understanding of complex vortex-phonon dynamics in out-of-equilibrium 2D quantum systems.</jats:p>Taming Recoil Effect in Cavity-Assisted Quantum Interconnects
ArXiv 2502.14859 (2025)
Scalable Networking of Neutral-Atom Qubits: Nanofiber-Based Approach for Multiprocessor Fault-Tolerant Quantum Computers
PRX Quantum American Physical Society (APS) 6:1 (2025) 010101
Observation of a Bilayer Superfluid with Interlayer Coherence
(2024)