Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Jinzhao Sun

Schmidt AI in Science Fellow

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
jinzhao.sun@physics.ox.ac.uk
Clarendon Laboratory
Personal website
Google Scholar
  • About
  • Publications

Ab initio quantum simulation of strongly correlated materials with quantum embedding

npj Computational Materials Springer Nature 9:1 (2023) 78

Authors:

Changsu Cao, Jinzhao Sun, Xiao Yuan, Han-Shi Hu, Hung Q Pham, Dingshun Lv
More details from the publisher
More details

Probing spectral features of quantum many-body systems with quantum simulators

(2023)

Authors:

Jinzhao Sun, Lucia Vilchez-Estevez, Vlatko Vedral, Andrew T Boothroyd, MS Kim
More details from the publisher
Details from ArXiV

Low-Depth Hamiltonian Simulation by an Adaptive Product Formula.

Physical review letters 130:4 (2023) 040601

Authors:

Zi-Jian Zhang, Jinzhao Sun, Xiao Yuan, Man-Hong Yung

Abstract:

Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer. The existing algorithms generally approximate the time evolution operators, which may need a deep quantum circuit that is beyond the capability of near-term noisy quantum devices. Here, focusing on the time evolution of a fixed input quantum state, we propose an adaptive approach to construct a low-depth time evolution circuit. By introducing a measurable quantifier that characterizes the simulation error, we use an adaptive strategy to learn the shallow quantum circuit that minimizes that error. We numerically test the adaptive method with electronic Hamiltonians of the H_{2}O and H_{4} molecules, and the transverse field Ising model with random coefficients. Compared to the first-order Suzuki-Trotter product formula, our method can significantly reduce the circuit depth (specifically the number of two-qubit gates) by around two orders while maintaining the simulation accuracy. We show applications of the method in simulating many-body dynamics and solving energy spectra with the quantum Krylov algorithm. Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
More details from the publisher
More details
More details

Experimental quantum computational chemistry with optimised unitary coupled cluster ansatz

ArXiv 2212.08006 (2022)

Authors:

Shaojun Guo, Jinzhao Sun, Haoran Qian, Ming Gong, Yukun Zhang, Fusheng Chen, Yangsen Ye, Yulin Wu, Sirui Cao, Kun Liu, Chen Zha, Chong Ying, Qingling Zhu, He-Liang Huang, Youwei Zhao, Shaowei Li, Shiyu Wang, Jiale Yu, Daojin Fan, Dachao Wu, Hong Su, Hui Deng, Hao Rong, Yuan Li, Kaili Zhang, Tung-Hsun Chung, Futian Liang, Jin Lin, Yu Xu, Lihua Sun, Cheng Guo, Na Li, Yong-Heng Huo, Cheng-Zhi Peng, Chao-Yang Lu, Xiao Yuan, Xiaobo Zhu, Jian-Wei Pan
Details from ArXiV

Simple and high-precision Hamiltonian simulation by compensating Trotter error with linear combination of unitary operations

ArXiv 2212.04566 (2022)

Authors:

Pei Zeng, Jinzhao Sun, Liang Jiang, Qi Zhao
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet