Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Jupiter's infrared image

What stir up Jupiter's unearthly jet streams and storms?

Credit: Gemini Observatory

Dr Xianyu Tan

Visitor

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary Climate Dynamics
xianyu.tan@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 209 G
My Personal Website
  • About
  • Research
  • Publications

Weak seasonality on temperate exoplanets around low-mass stars

Astrophysical Journal American Astronomical Society 926:2 (2022) 202

Abstract:

Planets with nonzero obliquity and/or orbital eccentricity experience seasonal variations of stellar irradiation at local latitudes. The extent of the atmospheric response can be crudely estimated by the ratio of the orbital timescale to the atmospheric radiative timescale. Given a set of atmospheric parameters, we show that this ratio depends mostly on the stellar properties and is independent of orbital distance and planetary equilibrium temperature. For Jupiter-like atmospheres, this ratio is ≪1 for planets around very low mass M dwarfs and ≳1 when the stellar mass is greater than about 0.6 solar mass. Complications can arise from various factors, including varying atmospheric metallicity, clouds, and atmospheric dynamics. Given the eccentricity and obliquity, the seasonal response is expected to be systematically weaker for gaseous exoplanets around low-mass stars and stronger for those around more massive stars. The amplitude and phase lag of atmospheric seasonal variations as a function of host stellar mass are quantified by idealized analytic models. At the infrared emission level in the photosphere, the relative amplitudes of thermal flux and temperature perturbations are negligible, and their phase lags are closed to −90° for Jupiter-like planets around very low mass stars. The relative amplitudes and phase lags increase gradually with increasing stellar mass. With a particular stellar mass, the relative amplitude and phase lag decrease from low- to high-infrared optical depth. We also present numerical calculations for a better illustration of the seasonal behaviors. Last, we discuss implications for the atmospheric circulation and future atmospheric characterization of exoplanets in systems with different stellar masses.
More details from the publisher
Details from ORA
More details

Sensitivity to Sub-Io-sized Exosatellite Transits in the MIRI LRS Light Curve of the Nearest Substellar Worlds

Astrophysical Journal Letters 992:1 (2025)

Authors:

A Householder, MA Limbach, B Biller, B Kotten, MJ Wilson, JM Vos, A Skemer, A Vanderburg, BJ Sutlieff, X Chen, IJM Crossfield, N Crouzet, T Dupuy, J Faherty, P Liu, E Manjavacas, A McCarthy, CV Morley, PS Muirhead, N Oliveros-Gomez, G Suárez, X Tan, Y Zhou

Abstract:

JWST’s unprecedented sensitivity enables precise spectrophotometric monitoring of substellar worlds, revealing atmospheric variability driven by mechanisms operating across different pressure levels. This same precision now permits exceptionally sensitive searches for transiting exosatellites—small terrestrial companions to these worlds. Using a novel simultaneous dual-band search method to address host variability, we present a search for transiting exosatellites in an 8 hr JWST/MIRI LRS light curve of the nearby (2.0 pc) substellar binary WISE J1049–5319 AB, composed of two ∼30 MJup brown dwarfs separated by 3.5 au and viewed nearly edge-on. Although we detect no statistically significant transits, our injection/recovery tests demonstrate sensitivity to satellites as small as 0.275 R⊕ (0.96 RIo or ∼1 lunar radius), corresponding to 300 ppm transit depths, and satellite-to-host mass ratios >10−6. This approach paves the way for detecting Galilean moon analogs around directly imaged brown dwarfs, free-floating planets, and wide-orbit exoplanets, dozens of which are already scheduled for JWST light-curve monitoring. In our solar system, each giant planet hosts on average 3.5 moons above this threshold, suggesting that JWST now probes a regime where such companions are expected to be abundant. The technique and sensitivities demonstrated here mark a critical step toward detecting exosatellites and ultimately enabling constraints on the occurrence rates of small terrestrial worlds orbiting 1–70 MJup hosts.
More details from the publisher

The JWST weather report: Retrieving temperature variations, auroral heating, and static cloud coverage on SIMP-0136

Astronomy and Astrophysics 702 (2025)

Authors:

E Nasedkin, M Schrader, JM Vos, B Biller, B Burningham, NB Cowan, JK Faherty, E Gonzales, MB Lam, AM Mccarthy, PS Muirhead, C O’Toole, MK Plummer, G Suárez, X Tan, C Visscher, N Whiteford, Y Zhou

Abstract:

SIMP-0136 is a T2.5 brown dwarf whose young age (200 ± 50 Myr) and low mass (15 ± 3 MJup) make it an ideal analogue for the directly imaged exoplanet population. With a 2.4 hour period, it is known to be variable in both the infrared (IR) and the radio, which has been attributed to changes in the cloud coverage and the presence of an aurora, respectively. To quantify the changes in the atmospheric state that drive this variability, we obtained time-series spectra of SIMP-0136 covering one full rotation with both NIRSpec/PRISM and the MIRI/LRS on board JWST. We performed a series of time-resolved atmospheric retrievals using petitRADTRANS to measure changes in the temperature structure, chemistry, and cloudiness. We inferred the presence of a ~250 K thermal inversion above 10 mbar of SIMP-0136 at all phases and we propose that this inversion is due to the deposition of energy into the upper atmosphere by an aurora. Statistical tests were performed to determine which parameters were driving the observed spectroscopic variability. The primary contribution was due to changes in the temperature profile at pressures deeper than 10 mbar, which resulted in variation of the effective temperature from 1243 K to 1248 K. This changing effective temperature was also correlated to observed changes in the abundances of CO2 and H2S, while all other chemical species were consistent with being homogeneous throughout the atmosphere. Patchy silicate clouds were required to fit the observed spectra, but the cloud properties were not found to systematically vary with longitude. This work paints a portrait of an L-T transition object, where the primary variability mechanisms are magnetic and thermodynamic in nature, rather than due to inhomogeneous cloud coverage.
More details from the publisher

Asymmetry and Dynamical Constraints in Two-limbs Retrieval of WASP-39 b Inferring from JWST Data

Astronomical Journal 169:6 (2025)

Authors:

Z Chen, J Ji, G Chen, F Yan, X Tan

Abstract:

Transmission spectroscopy has provided unprecedented insight into the makeup of exoplanet atmospheres. A transmission spectrum contains contributions from a planet’s morning and evening limbs, which can differ in temperature, composition, and aerosol properties due to atmospheric circulation. While high-resolution ground-based observations have identified limb asymmetry in several ultrahot/hot exoplanets, space-based studies of limb asymmetry are still in their early stages. The prevalence of limb asymmetry across a broad range of exoplanets remains largely unexplored. We conduct a comparative analysis of retrievals on transmission spectra, including traditional one-dimensional (1D) approaches and four 2D models that account for limb asymmetry. Two of these 2D models include our newly proposed dynamical constraints derived from shallow-water simulations to provide physically-motivated temperature differences between limbs. Our analysis of WASP-39 b using JWST observations and previous combined data sets (HST, VLT, and Spitzer) strongly favors 2D retrievals over traditional 1D approaches, confirming significant limb asymmetry in this hot Jupiter. Within our 2D framework, unconstrained models recover larger temperature contrasts than dynamically-constrained models, with improved fits to specific spectral features, although Bayesian evidence cannot definitively distinguish between these 2D approaches. Our results support the presence of homogeneous C/O in both the morning and evening atmospheres, but with temperature differences leading to variations in clouds and hazes. Using this treatment, we can study a larger sample of hot Jupiters to gain insights into atmospheric limb asymmetries on these planets.
More details from the publisher
More details

The JWST weather report from the nearest brown dwarfs II: consistent variability mechanisms over 7 months revealed by 1–14 μm NIRSpec + MIRI monitoring of WISE 1049AB

Monthly Notices of the Royal Astronomical Society 539:4 (2025) 3758-3777

Authors:

X Chen, BA Biller, X Tan, JM Vos, Y Zhou, G Suárez, AM McCarthy, CV Morley, N Whiteford, TJ Dupuy, J Faherty, BJ Sutlieff, N Oliveros-Gomez, E Manjavacas, MA Limbach, EKH Lee, T Karalidi, IJM Crossfield, P Liu, P Molliere, PS Muirhead, T Henning, G Mace, N Crouzet, T Kataria

Abstract:

We present a new epoch of JWST spectroscopic variability monitoring of the benchmark binary brown dwarf WISE 1049AB, the closest, brightest brown dwarfs known. Our 8-h JWST/MIRI low resolution spectroscopy and 7-h JWST/NIRSpec prism observations extended variability measurements for any brown dwarfs beyond 11  μm for the first time, reaching up to 14 μm. Combined with the previous epoch in 2023, they set the longest JWST weather monitoring baseline to date. We found that both WISE 1049AB show wavelength-dependent light-curve behaviours. Using a robust k-means clustering algorithm, we identified several clusters of variability behaviours associated with three distinct pressure levels. By comparing to a general circulation model, we identified the possible mechanisms that drive the variability at these pressure levels: patchy clouds rotating in and out of view likely shaped the dramatic light curves in the deepest layers between 1–2.5 μm, whereas hotspots arising from temperature/chemical variations of molecular species likely dominate the high-altitude levels between 2.5–3.6 μm and 4.3–8.5 μm. Small-grain silicates potentially contributed to the variability of WISE 1049A at 8.5–11 μm. While distinct atmospheric layers are governed by different mechanisms, we confirmed for the first time that each variability mechanism remains consistent within its layer over the long term. Future multiperiod observations will further test the stability of variability mechanisms on this binary, and expanded JWST variability surveys across the L-T-Y sequence will allow us to trace and understand variability mechanisms across a wider population of brown dwarfs and planetary-mass objects.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet