Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Niranjan Thatte

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Exoplanets and Stellar Physics
  • Galaxy formation and evolution
  • Extremely Large Telescope
Niranjan.Thatte@physics.ox.ac.uk
Telephone: 01865 (2)73412
Denys Wilkinson Building, room 709
  • About
  • Teaching
  • Publications

Adaptive Optics Integral Field Spectroscopy of the Young Stellar Objects in LkH_alpha 225

ArXiv astro-ph/0101100 (2001)

Authors:

RI Davies, M Tecza, LW Looney, F Eisenhauer, LE Tacconi-Garman, N Thatte, T Ott, S Rabien

Abstract:

Progress in understanding the embedded stars in LkHa225 has been hampered by their variability, making it hard to compare data taken at different times, and by the limited resolution of the available data, which cannot probe the small scales between the two stars. In an attempt to overcome these difficulties, we present new near-infrared data on this object taken using the ALFA adaptive optics system with the MPE 3D integral field spectrometer and the near-infrared camera Omega-Cass. The stars themselves have K-band spectra which are dominated by warm dust emission, analagous to class I-II for low mass YSOs, suggesting that the stars are in a phase where they are still accreting matter. On the other hand, the ridge of continuum emission between them is rather bluer, suggestive of extincted and/or scattered stellar light rather than direct dust emission. The compactness of the CO emission seen toward each star argues for accretion disks (which can also account for much of the K-band veiling) rather than a neutral wind. In contrast to other YSOs with CO emission, LkHa225 has no detectable Br_gamma emission. Additionally there is no H_2 detected on the northern star, although we do confirm that the strongest H_2 emission is on the southern star, where we find it is excited primarily by thermal mechanisms. A second knot of H_2 is observed to its northeast, with a velocity shift of -75kms and a higher fraction of non-thermal emission. This is discussed with reference to the H2O maser, the molecular outflow, and [S II] emission observed between the stars.
Details from ArXiV
More details from the publisher
More details

Effects of anisotropy on the central dark mass in NGC 3115. New results from integral field spectroscopy

ESO ASTROPHY SYMP (2001) 88-90

Authors:

SW Anders, N Thatte, R Genzel

Abstract:

We report new results on the stellar kinematics and the mass distribution of the galaxy NGC 3115 based on NIR integral field spectroscopic data. Investigations using long slit spectroscopic data have yielded strong evidence for the presence of a massive dark object of ca. 10(9) solar masses. NGC 3115 therefore appears to be a prominent candidate for hosting a black hole in its center. We demonstrate that with integral field spectroscopy the rotation and velocity dispersion can be much better constrained by sampling in both spatial dimensions. This yields revised and more secure results.
More details from the publisher
More details

Pattern speed measurements in two barred galaxies

ASTR SOC P 249 (2001) 78-84

Authors:

AJ Baker, E Schinnerer, NZ Scoville, PP Englmaier, LJ Tacconi, LE Tacconi-Garman, N Thatte

Abstract:

Knowledge of the pattern speed in a barred galaxy is an important prerequisite for determining the radii of its dynamical resonances. Once identified, these can in turn be used to constrain models for nuclear fueling and secular evolution. Here, we present measurements of the pattern speeds in two barred galaxies-one direct (in NGC 1068, using the Tremaine-Weinberg method in the near infrared) and one indirect (in NGC 7479, using a fit to three-dimensional molecular emission-line data). We find good evidence that a configuration of dynamically decoupled "bars within bars" is present in each system.
More details

Probing the heart of an active galactic nucleus: NGC 1068

IAU SYMP (2001) 216-219

Authors:

M Tecza, N Thatte, R Maiolino

Abstract:

We present results from integral field spectroscopy of the narrow line region of NGC 1068, carried out with the MPE 3D near infrared imaging spectrometer. A map and velocity field of the [Fe II] fine structure line at 1.64mum is presented. The kinematics of the [Fe II] emission, which arises in partially ionized zones, shows red shifted emission in the north eastern cone of the NLR, and blue shifted emission in the south west, reversed relative to high ionization species such as [Si VI] or [0 111]. We propose a model geometry of the narrow line region which is consistent with existing data and explains the observed [Fe II] kinematics.
More details from the publisher
More details

SINFONI - Galaxy dynamics at 0.'' 05 resolution with the VLT

ESO ASTROPHY SYMP (2001) 107-110

Authors:

N Thatte, F Eisenbauer, M Tecza, S Mengel, R Genzel, G Monnet, D Bonaccini, E Emsellem

Abstract:

The SINFONI integral field spectrometer for the VLT will provide near-infrared spatially resolved spectra at spatial resolutions close to the diffraction limit of the telescope (0." 05 at 2 pm). 1024 spectra can be simultaneously obtained, covering a 32x32 pixel field of view with similar to 100% filling factor. The spectral resolution is R similar to 4500, corresponding to a kinematic resolution of 67 km s(-1). SINFONI is ideally suited to study stellar kinematics in the nuclear regions of normal spiral galaxies, using the near-infrared H and K band CO stellar absorption features. Integral field data from SINFONI will provide high-resolution two-dimensional maps of nuclear velocity dispersion and rotation, which in turn will constrain the anisotropy parameter and yield robust estimates of the central dark mass.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • Current page 40
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet