Stellar Dynamics and the implications on the merger evolution in NGC6240
ArXiv astro-ph/0001424 (2000)
Abstract:
We report near-infrared integral field spectroscopy of the luminous merging galaxy NGC 6240. Stellar velocities show that the two K-band peaks separated by 1.6arcsec are the central parts of inclined, rotating disk galaxies with equal mass bulges. The dynamical masses of the nuclei are much larger than the stellar mass derived from the K-band light, implying that the progenitor galaxies were galaxies with massive bulges. The K-band light is dominated by red supergiants formed in the two nuclei in starbursts, triggered ~2x10^7 years ago, possibly by the most recent perigalactic approach. Strong feedback effects of a superwind and supernovae are responsible for a short duration burst (~5x10^6 years) which is already decaying. The two galaxies form a prograde-retrograde rotating system and from the stellar velocity field it seems that one of the two interacting galaxies is subject to a prograde encounter. Between the stellar nuclei is a prominent peak of molecular gas (H_2, CO). The stellar velocity dispersion peaks there indicating that the gas has formed a local, self-gravitating concentration decoupled from the stellar gravitational potential. NGC 6240 has previously been reported to fit the paradigm of an elliptical galaxy formed through the merger of two galaxies. This was based on the near-infrared light distribution which follows a r^1/4-law. Our data cast strong doubt on this conclusion: the system is by far not relaxed, rotation plays an important role, as does self-gravitating gas, and the near-infrared light is dominated by young stars.Near infrared imaging spectroscopy of NGC1275
ArXiv astro-ph/0001052 (2000)
Abstract:
We present H and K band imaging spectroscopy of the core regions of the cD/AGN galaxy NGC1275. The spectra, including lines from H2, H, 12CO bandheads, [FeII], and [FeIII], are exploited to constrain the star formation and excitation mechanisms in the galaxy's nucleus. The near-infrared properties can largely be accounted for by ionized gas in the NLR, dense molecular gas, and hot dust concentrated near the active nucleus of NGC1275. The strong and compact H2 emission is mostly from circumnuclear gas excited by the AGN and not from the cooling flow. The extended emission of latetype stars is diluted in the center by the thermal emission of hot dust.ALFA & 3D: Integral field spectroscopy with adaptive optics
Proceedings of SPIE - The International Society for Optical Engineering 4007 (2000)
Abstract:
One of the most important techniques for astrophysics with adaptive optics is the ability to do spectroscopy at diffraction limited scales. The extreme difficulty of positioning a faint target accurately on a very narrow slit can be avoided by using an integral field unit, which provides the added benefit of full spatial coverage. During 1998, working with ALFA and the 3D integral field spectrometer, we demonstrated the validity of this technique by extracting and distinguishing spectra from binary stars separated by only 0.26 inch. The combination of ALFA & 3D is also ideally suited to imaging distant galaxies or the nuclei of nearby ones, as its field of view can be changed between 1.2 inches×1.2 inches and 4 inches×4 inches, depending on the pixel scale chosen. In this contribution we present new results both on galactic targets, namely young stellar objects, as well as extra-galactic objects including a Seyfert and a starburst nucleus.LUCIFER - a NIR spectrograph and imager for the LBT
Proceedings of SPIE - The International Society for Optical Engineering 4008 (2000)
Abstract:
LUCIFER (LBT NIR-Spectroscopic Utility with Camera and Integral-Field Unit for Extragalactic Research) is a full cryogenic NIR spectrograph and imager (λ 0.9μ - 2.5μ, zJHK-bands) to be built by a consortium of five institutes (Landessternwarte Heidelberg (LSW), Max Planck Institut fuer Astronomie in Heidelberg (MPIA), Max Planck Institut fuer Extraterrestrische Physik (MPE) in Garching, Astronomisches Institut der Ruhr Universitaet Bochum (AIRUB) and Fachhochschule fuer Technik und Gestaltung (FHTG) in Mannheim). The instrument has been selected as one of three first-light instruments for the Large Binocular Telescope (LBT) on Mt. Graham, Arizona which first mirror becomes available to the community in early 2003. The second mirror and a second more or less identical spectrograph/imager follows 18 month later. Both LUCIFER instruments will be mounted at the bent Gregorian foci of the two individual LBT-mirrors and include six observing modes: seeing and diffraction limited imaging, seeing and diffraction limited longslit spectroscopy, seeing limited multi-object spectroscopy (MOS) and integral-field spectroscopy (IFU). The detector will be a Rockwell HAWAII-2 HgCdTe-array with a pixel-size of 18μ.A new era of spectroscopy: SINFONI, NIR integral field spectroscopy at the diffraction limit of an 8m telescope
P SOC PHOTO-OPT INS 4005 (2000) 301-309