Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Niranjan Thatte

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Exoplanets and Stellar Physics
  • Galaxy formation and evolution
  • Extremely Large Telescope
Niranjan.Thatte@physics.ox.ac.uk
Telephone: 01865 (2)73412
Denys Wilkinson Building, room 709
  • About
  • Teaching
  • Publications

Stellar Dynamics and the implications on the merger evolution in NGC6240

ArXiv astro-ph/0001424 (2000)

Authors:

M Tecza, R Genzel, LJ Tacconi, S Anders, LE Tacconi-Garman, N Thatte

Abstract:

We report near-infrared integral field spectroscopy of the luminous merging galaxy NGC 6240. Stellar velocities show that the two K-band peaks separated by 1.6arcsec are the central parts of inclined, rotating disk galaxies with equal mass bulges. The dynamical masses of the nuclei are much larger than the stellar mass derived from the K-band light, implying that the progenitor galaxies were galaxies with massive bulges. The K-band light is dominated by red supergiants formed in the two nuclei in starbursts, triggered ~2x10^7 years ago, possibly by the most recent perigalactic approach. Strong feedback effects of a superwind and supernovae are responsible for a short duration burst (~5x10^6 years) which is already decaying. The two galaxies form a prograde-retrograde rotating system and from the stellar velocity field it seems that one of the two interacting galaxies is subject to a prograde encounter. Between the stellar nuclei is a prominent peak of molecular gas (H_2, CO). The stellar velocity dispersion peaks there indicating that the gas has formed a local, self-gravitating concentration decoupled from the stellar gravitational potential. NGC 6240 has previously been reported to fit the paradigm of an elliptical galaxy formed through the merger of two galaxies. This was based on the near-infrared light distribution which follows a r^1/4-law. Our data cast strong doubt on this conclusion: the system is by far not relaxed, rotation plays an important role, as does self-gravitating gas, and the near-infrared light is dominated by young stars.
Details from ArXiV
More details from the publisher
More details

Near infrared imaging spectroscopy of NGC1275

ArXiv astro-ph/0001052 (2000)

Authors:

Alfred Krabbe, Bruce J Sams III, Reinhard Genzel, Niranjan Thatte, Francisco Prada

Abstract:

We present H and K band imaging spectroscopy of the core regions of the cD/AGN galaxy NGC1275. The spectra, including lines from H2, H, 12CO bandheads, [FeII], and [FeIII], are exploited to constrain the star formation and excitation mechanisms in the galaxy's nucleus. The near-infrared properties can largely be accounted for by ionized gas in the NLR, dense molecular gas, and hot dust concentrated near the active nucleus of NGC1275. The strong and compact H2 emission is mostly from circumnuclear gas excited by the AGN and not from the cooling flow. The extended emission of latetype stars is diluted in the center by the thermal emission of hot dust.
Details from ArXiV
More details

ALFA & 3D: Integral field spectroscopy with adaptive optics

Proceedings of SPIE - The International Society for Optical Engineering 4007 (2000)

Authors:

RI Davies, M Kasper, N Thatte, M Tecza, LE Tacconi-Garman, S Anders, T Herbst

Abstract:

One of the most important techniques for astrophysics with adaptive optics is the ability to do spectroscopy at diffraction limited scales. The extreme difficulty of positioning a faint target accurately on a very narrow slit can be avoided by using an integral field unit, which provides the added benefit of full spatial coverage. During 1998, working with ALFA and the 3D integral field spectrometer, we demonstrated the validity of this technique by extracting and distinguishing spectra from binary stars separated by only 0.26 inch. The combination of ALFA & 3D is also ideally suited to imaging distant galaxies or the nuclei of nearby ones, as its field of view can be changed between 1.2 inches×1.2 inches and 4 inches×4 inches, depending on the pixel scale chosen. In this contribution we present new results both on galactic targets, namely young stellar objects, as well as extra-galactic objects including a Seyfert and a starburst nucleus.

LUCIFER - a NIR spectrograph and imager for the LBT

Proceedings of SPIE - The International Society for Optical Engineering 4008 (2000)

Authors:

H Mandel, I Appenzeller, D Bomans, F Eisenhauer, B Grimm, T Herbst, R Hofman, M Lehmitz, R Lemke, M Lehnert, R Lenzen, T Luks, R Mohr, W Seifert, N Thatte, et al

Abstract:

LUCIFER (LBT NIR-Spectroscopic Utility with Camera and Integral-Field Unit for Extragalactic Research) is a full cryogenic NIR spectrograph and imager (λ 0.9μ - 2.5μ, zJHK-bands) to be built by a consortium of five institutes (Landessternwarte Heidelberg (LSW), Max Planck Institut fuer Astronomie in Heidelberg (MPIA), Max Planck Institut fuer Extraterrestrische Physik (MPE) in Garching, Astronomisches Institut der Ruhr Universitaet Bochum (AIRUB) and Fachhochschule fuer Technik und Gestaltung (FHTG) in Mannheim). The instrument has been selected as one of three first-light instruments for the Large Binocular Telescope (LBT) on Mt. Graham, Arizona which first mirror becomes available to the community in early 2003. The second mirror and a second more or less identical spectrograph/imager follows 18 month later. Both LUCIFER instruments will be mounted at the bent Gregorian foci of the two individual LBT-mirrors and include six observing modes: seeing and diffraction limited imaging, seeing and diffraction limited longslit spectroscopy, seeing limited multi-object spectroscopy (MOS) and integral-field spectroscopy (IFU). The detector will be a Rockwell HAWAII-2 HgCdTe-array with a pixel-size of 18μ.

A new era of spectroscopy: SINFONI, NIR integral field spectroscopy at the diffraction limit of an 8m telescope

P SOC PHOTO-OPT INS 4005 (2000) 301-309

Authors:

S Mengel, F Eisenhauer, M Tecza, N Thatte, C Rohrle, K Bickert, J Schreiber

Abstract:

SINFONI, the SINgle Faint Object Near-infrared Investigation, is an instrument for the Very Large Telescope (VLT), which will start its operation mid 2002 and allow for the first time near infrared (NIR) integral field spectroscopy at the diffraction limit of an 8-m telescope. SINFONI is the combination of two state-of-the art instruments, the integral field spectrometer SPIFFI, built by the Max-Planck-Institut fur extraterrestrische Physik (MPE), and the adaptive optics (AO) system MACAO, built by the European Southern Observatory (ESO). It will allow a unique type of observations by delivering simultaneously high spatial resolution (pixel sizes 0".025 to 0".25) and a moderate spectral resolution (R similar to 2000 to R similar to 4500), where the higher spectral resolution mode will allow for software OH suppression. This opens new prospects for astronomy.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Current page 42
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet