Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Jarla Thiesbrummel

Visitor

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics
jarla.thiesbrummel@physics.ox.ac.uk
Robert Hooke Building, room G29
My personal website
  • About
  • Publications

Roadmap on established and emerging photovoltaics for sustainable energy conversion

JPhys Energy IOP Publishing 6:4 (2024) 041501

Authors:

James C Blakesley, Ruy S Bonilla, Marina Freitag, Alex M Ganose, Nicola Gasparini, Pascal Kaienburg, George Koutsourakis, Jonathan D Major, Jenny Nelson, Nakita K Noel, Bart Roose, Jae Sung Yun, Simon Aliwell, Pietro P Altermatt, Tayebeh Ameri, Virgil Andrei, Ardalan Armin, Diego Bagnis, Jenny Baker, Hamish Beath, Mathieu Bellanger, Philippe Berrouard, Jochen Blumberger, Stuart A Boden, Marina R Filip, Elizabeth A Gibson, M Saiful Islam, Michael B Johnston

Abstract:

Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfill ambitions for net-zero carbon dioxide equivalent (CO2eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TWp in 2021 to 8.5 TWp by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the PVs community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.
More details from the publisher
Details from ORA
More details

Narrow bandgap Metal halide perovskites for all-perovskite tandem photovoltaics

Chemical Reviews American Chemical Society 124:7 (2024) 4079-4123

Authors:

Shuaifeng Hu, Jarla Thiesbrummel, Jorge Pascual, Martin Stolterfoht, Atsushi Wakamiya, Henry J Snaith

Abstract:

All-perovskite tandem solar cells are attracting considerable interest in photovoltaics research, owing to their potential to surpass the theoretical efficiency limit of single-junction cells, in a cost-effective sustainable manner. Thanks to the bandgap-bowing effect, mixed tin−lead (Sn−Pb) perovskites possess a close to ideal narrow bandgap for constructing tandem cells, matched with wide-bandgap neat lead-based counterparts. The performance of all-perovskite tandems, however, has yet to reach its efficiency potential. One of the main obstacles that need to be overcome is the─oftentimes─low quality of the mixed Sn−Pb perovskite films, largely caused by the facile oxidation of Sn(II) to Sn(IV), as well as the difficult-to-control film crystallization dynamics. Additional detrimental imperfections are introduced in the perovskite thin film, particularly at its vulnerable surfaces, including the top and bottom interfaces as well as the grain boundaries. Due to these issues, the resultant device performance is distinctly far lower than their theoretically achievable maximum efficiency. Robust modifications and improvements to the surfaces of mixed Sn−Pb perovskite films are therefore critical for the advancement of the field. This Review describes the origins of imperfections in thin films and covers efforts made so far toward reaching a better understanding of mixed Sn−Pb perovskites, in particular with respect to surface modifications that improved the efficiency and stability of the narrow bandgap solar cells. In addition, we also outline the important issues of integrating the narrow bandgap subcells for achieving reliable and efficient all-perovskite double- and multi-junction tandems. Future work should focus on the characterization and visualization of the specific surface defects, as well as tracking their evolution under different external stimuli, guiding in turn the processing for efficient and stable single-junction and tandem solar cell devices.

More details from the publisher
Details from ORA
More details
More details

Unveiling the Potential of Ambient Air Annealing for Highly Efficient Inorganic CsPbI3 Perovskite Solar Cells

Journal of the American Chemical Society American Chemical Society (ACS) 146:7 (2024) 4642-4651

Authors:

Zafar Iqbal, Roberto Félix, Artem Musiienko, Jarla Thiesbrummel, Hans Köbler, Emilio Gutierrez-Partida, Thomas W Gries, Elif Hüsam, Ahmed Saleh, Regan G Wilks, Jiahuan Zhang, Martin Stolterfoht, Dieter Neher, Steve Albrecht, Marcus Bär, Antonio Abate, Qiong Wang
More details from the publisher
More details
More details

Minimizing Interfacial Recombination in 1.8 eV Triple‐Halide Perovskites for 27.5% Efficient All‐Perovskite Tandems

Advanced Materials Wiley 36:6 (2024) e2307743

Authors:

Fengjiu Yang, Philipp Tockhorn, Artem Musiienko, Felix Lang, Dorothee Menzel, Rowan Macqueen, Eike Köhnen, Ke Xu, Silvia Mariotti, Daniele Mantione, Lena Merten, Alexander Hinderhofer, Bor Li, Dan R Wargulski, Steven P Harvey, Jiahuan Zhang, Florian Scheler, Sebastian Berwig, Marcel Roß, Jarla Thiesbrummel, Amran Al‐Ashouri, Kai O Brinkmann, Thomas Riedl, Frank Schreiber, Daniel Abou‐Ras, Henry Snaith, Dieter Neher, Lars Korte, Martin Stolterfoht, Steve Albrecht
More details from the publisher
More details
More details

Mismatch of Quasi–Fermi Level Splitting and Voc in Perovskite Solar Cells

Advanced Energy Materials Wiley 13:48 (2023)

Authors:

Jonathan Warby, Sahil Shah, Jarla Thiesbrummel, Emilio Gutierrez‐Partida, Huagui Lai, Biruk Alebachew, Max Grischek, Fengjiu Yang, Felix Lang, Steve Albrecht, Fan Fu, Dieter Neher, Martin Stolterfoht
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet