Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Jarla Thiesbrummel

Visitor

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics
jarla.thiesbrummel@physics.ox.ac.uk
Robert Hooke Building, room G29
  • About
  • Publications

Narrow bandgap Metal halide perovskites for all-perovskite tandem photovoltaics

Chemical Reviews American Chemical Society 124:7 (2024) 4079-4123

Authors:

Shuaifeng Hu, Jarla Thiesbrummel, Jorge Pascual, Martin Stolterfoht, Atsushi Wakamiya, Henry J Snaith

Abstract:

All-perovskite tandem solar cells are attracting considerable interest in photovoltaics research, owing to their potential to surpass the theoretical efficiency limit of single-junction cells, in a cost-effective sustainable manner. Thanks to the bandgap-bowing effect, mixed tin−lead (Sn−Pb) perovskites possess a close to ideal narrow bandgap for constructing tandem cells, matched with wide-bandgap neat lead-based counterparts. The performance of all-perovskite tandems, however, has yet to reach its efficiency potential. One of the main obstacles that need to be overcome is the─oftentimes─low quality of the mixed Sn−Pb perovskite films, largely caused by the facile oxidation of Sn(II) to Sn(IV), as well as the difficult-to-control film crystallization dynamics. Additional detrimental imperfections are introduced in the perovskite thin film, particularly at its vulnerable surfaces, including the top and bottom interfaces as well as the grain boundaries. Due to these issues, the resultant device performance is distinctly far lower than their theoretically achievable maximum efficiency. Robust modifications and improvements to the surfaces of mixed Sn−Pb perovskite films are therefore critical for the advancement of the field. This Review describes the origins of imperfections in thin films and covers efforts made so far toward reaching a better understanding of mixed Sn−Pb perovskites, in particular with respect to surface modifications that improved the efficiency and stability of the narrow bandgap solar cells. In addition, we also outline the important issues of integrating the narrow bandgap subcells for achieving reliable and efficient all-perovskite double- and multi-junction tandems. Future work should focus on the characterization and visualization of the specific surface defects, as well as tracking their evolution under different external stimuli, guiding in turn the processing for efficient and stable single-junction and tandem solar cell devices.

More details from the publisher
Details from ORA
More details
More details

Minimizing Interfacial Recombination in 1.8 eV Triple-Halide Perovskites for 27.5% Efficient All-Perovskite Tandems.

Advanced materials (Deerfield Beach, Fla.) 36:6 (2024) e2307743

Authors:

Fengjiu Yang, Philipp Tockhorn, Artem Musiienko, Felix Lang, Dorothee Menzel, Rowan Macqueen, Eike Köhnen, Ke Xu, Silvia Mariotti, Daniele Mantione, Lena Merten, Alexander Hinderhofer, Bor Li, Dan R Wargulski, Steven P Harvey, Jiahuan Zhang, Florian Scheler, Sebastian Berwig, Marcel Roß, Jarla Thiesbrummel, Amran Al-Ashouri, Kai O Brinkmann, Thomas Riedl, Frank Schreiber, Daniel Abou-Ras, Henry Snaith, Dieter Neher, Lars Korte, Martin Stolterfoht, Steve Albrecht

Abstract:

All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.
More details from the publisher
More details
More details

Unveiling the Potential of Ambient Air Annealing for Highly Efficient Inorganic CsPbI3 Perovskite Solar Cells.

Journal of the American Chemical Society 146:7 (2024) 4642-4651

Authors:

Zafar Iqbal, Roberto Félix, Artem Musiienko, Jarla Thiesbrummel, Hans Köbler, Emilio Gutierrez-Partida, Thomas W Gries, Elif Hüsam, Ahmed Saleh, Regan G Wilks, Jiahuan Zhang, Martin Stolterfoht, Dieter Neher, Steve Albrecht, Marcus Bär, Antonio Abate, Qiong Wang

Abstract:

Here, we report a detailed surface analysis of dry- and ambient air-annealed CsPbI3 films and their subsequent modified interfaces in perovskite solar cells. We revealed that annealing in ambient air does not adversely affect the optoelectronic properties of the semiconducting film; instead, ambient air-annealed samples undergo a surface modification, causing an enhancement of band bending, as determined by hard X-ray photoelectron spectroscopy measurements. We observe interface charge carrier dynamics changes, improving the charge carrier extraction in CsPbI3 perovskite solar cells. Optical spectroscopic measurements show that trap state density is decreased due to ambient air annealing. As a result, air-annealed CsPbI3-based n-i-p structure devices achieved a 19.8% power conversion efficiency with a 1.23 V open circuit voltage.
More details from the publisher
More details
More details

Mismatch of Quasi–Fermi Level Splitting and Voc in Perovskite Solar Cells

Advanced Energy Materials Wiley 13:48 (2023)

Authors:

Jonathan Warby, Sahil Shah, Jarla Thiesbrummel, Emilio Gutierrez‐Partida, Huagui Lai, Biruk Alebachew, Max Grischek, Fengjiu Yang, Felix Lang, Steve Albrecht, Fan Fu, Dieter Neher, Martin Stolterfoht
More details from the publisher
More details

A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems

Nature Energy Springer Nature 8:7 (2023) 714-724

Authors:

Jingwei Zhu, Yi Luo, Rui He, Cong Chen, Yang Wang, Jincheng Luo, Zongjin Yi, Jarla Thiesbrummel, Changlei Wang, Felix Lang, Huagui Lai, Yuliang Xu, Juncheng Wang, Zhihao Zhang, Wenqing Liang, Guangyao Cui, Shengqiang Ren, Xia Hao, Hao Huang, Ye Wang, Fang Yao, Qianqian Lin, Lili Wu, Jingquan Zhang, Martin Stolterfoht, Fan Fu, Dewei Zhao
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet