Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Jarla Thiesbrummel

Visitor

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics
jarla.thiesbrummel@physics.ox.ac.uk
Robert Hooke Building, room G29
  • About
  • Publications

Improving interface quality for 1-cm2 all-perovskite tandem solar cells.

Nature 618:7963 (2023) 80-86

Authors:

Rui He, Wanhai Wang, Zongjin Yi, Felix Lang, Cong Chen, Jincheng Luo, Jingwei Zhu, Jarla Thiesbrummel, Sahil Shah, Kun Wei, Yi Luo, Changlei Wang, Huagui Lai, Hao Huang, Jie Zhou, Bingsuo Zou, Xinxing Yin, Shengqiang Ren, Xia Hao, Lili Wu, Jingquan Zhang, Jinbao Zhang, Martin Stolterfoht, Fan Fu, Weihua Tang, Dewei Zhao

Abstract:

All-perovskite tandem solar cells provide high power conversion efficiency at a low cost1-4. Rapid efficiency improvement in small-area (<0.1 cm2) tandem solar cells has been primarily driven by advances in low-bandgap (approximately 1.25 eV) perovskite bottom subcells5-7. However, unsolved issues remain for wide-bandgap (> 1.75 eV) perovskite top subcells8, which at present have large voltage and fill factor losses, particularly for large-area (>1 cm2) tandem solar cells. Here we develop a self-assembled monolayer of (4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid as a hole-selective layer for wide-bandgap perovskite solar cells, which facilitates subsequent growth of high-quality wide-bandgap perovskite over a large area with suppressed interfacial non-radiative recombination, enabling efficient hole extraction. By integrating (4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid in devices, we demonstrate a high open-circuit voltage (VOC) of 1.31 V in a 1.77-eV perovskite solar cell, corresponding to a very low VOC deficit of 0.46 V (with respect to the bandgap). With these wide-bandgap perovskite subcells, we report 27.0% (26.4% certified stabilized) monolithic all-perovskite tandem solar cells with an aperture area of 1.044 cm2. The certified tandem cell shows an outstanding combination of a high VOC of 2.12 V and a fill factor of 82.6%. Our demonstration of the large-area tandem solar cells with high certified efficiency is a key step towards scaling up all-perovskite tandem photovoltaic technology.
More details from the publisher
More details
More details

Determination of Mobile Ion Densities in Halide Perovskites via Low-Frequency Capacitance and Charge Extraction Techniques.

The journal of physical chemistry letters 14:18 (2023) 4200-4210

Authors:

Jonas Diekmann, Francisco Peña-Camargo, Nurlan Tokmoldin, Jarla Thiesbrummel, Jonathan Warby, Emilio Gutierrez-Partida, Sahil Shah, Dieter Neher, Martin Stolterfoht

Abstract:

Mobile ions in perovskite photovoltaic devices can hinder performance and cause degradation by impeding charge extraction and screening the internal field. Accurately quantifying mobile ion densities remains a challenge and is a highly debated topic. We assess the suitability of several experimental methodologies for determining mobile ion densities by using drift-diffusion simulations. We found that charge extraction by linearly increasing voltage (CELIV) underestimates ion density, but bias-assisted charge extraction (BACE) can accurately reproduce ionic lower than the electrode charge. A modified Mott-Schottky (MS) analysis at low frequencies can provide ion density values for high excess ionic densities, typical for perovskites. The most significant contribution to capacitance originates from the ionic depletion layer rather than the accumulation layer. Using low-frequency MS analysis, we also demonstrate light-induced generation of mobile ions. These methods enable accurate tracking of ionic densities during device aging and a deeper understanding of ionic losses.
More details from the publisher
More details
More details

Rubidium Iodide Reduces Recombination Losses in Methylammonium‐Free Tin‐Lead Perovskite Solar Cells

Advanced Energy Materials Wiley 13:19 (2023)

Authors:

Fengjiu Yang, Rowan W MacQueen, Dorothee Menzel, Artem Musiienko, Amran Al‐Ashouri, Jarla Thiesbrummel, Sahil Shah, Karunanantharajah Prashanthan, Daniel Abou‐Ras, Lars Korte, Martin Stolterfoht, Dieter Neher, Igal Levine, Henry Snaith, Steve Albrecht
More details from the publisher
More details

Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells

Nature communications Springer Nature 14:1 (2023) 932

Authors:

Pietro Caprioglio, Joel A Smith, Robert DJ Oliver, Akash Dasgupta, Saqlain Choudhary, Michael D Farrar, Alexandra J Ramadan, Yen-Hung Lin, M Greyson Christoforo, James M Ball, Jonas Diekmann, Jarla Thiesbrummel, Karl-Augustin Zaininger, Xinyi Shen, Michael B Johnston, Dieter Neher, Martin Stolterfoht, Henry J Snaith

Abstract:

In this work, we couple theoretical and experimental approaches to understand and reduce the losses of wide bandgap Br-rich perovskite pin devices at open-circuit voltage (VOC) and short-circuit current (JSC) conditions. A mismatch between the internal quasi-Fermi level splitting (QFLS) and the external VOC is detrimental for these devices. We demonstrate that modifying the perovskite top-surface with guanidinium-Br and imidazolium-Br forms a low-dimensional perovskite phase at the n-interface, suppressing the QFLS-VOC mismatch, and boosting the VOC. Concurrently, the use of an ionic interlayer or a self-assembled monolayer at the p-interface reduces the inferred field screening induced by mobile ions at JSC, promoting charge extraction and raising the JSC. The combination of the n- and p-type optimizations allows us to approach the thermodynamic potential of the perovskite absorber layer, resulting in 1 cm2 devices with performance parameters of VOCs up to 1.29 V, fill factors above 80% and JSCs up to 17 mA/cm2, in addition to a thermal stability T80 lifetime of more than 3500 h at 85 °C.

More details from the publisher
Details from ORA
More details
More details

Understanding and Minimizing VOC Losses in All‐Perovskite Tandem Photovoltaics

Advanced Energy Materials Wiley 13:3 (2023)

Authors:

Jarla Thiesbrummel, Francisco Peña‐Camargo, Kai Oliver Brinkmann, Emilio Gutierrez‐Partida, Fengjiu Yang, Jonathan Warby, Steve Albrecht, Dieter Neher, Thomas Riedl, Henry J Snaith, Martin Stolterfoht, Felix Lang
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet