Water and hydrophobic gates in ion channels and nanopores
Faraday Discussions Royal Society of Chemistry 209 (2018) 231-247
Abstract:
Ion channel proteins form nanopores in biological membranes which allow the passage of ions and water molecules. Hydrophobic constrictions in such pores can form gates, i.e. energetic barriers to water and ion permeation. Molecular dynamics simulations of water in ion channels may be used to assess whether a hydrophobic gate is closed (i.e. impermeable to ions) or open. If there is an energetic barrier to water permeation then it is likely that a gate will also be impermeable to ions. Simulations of water behaviour have been used to probe hydrophobic gates in two recently reported ion channel structures: BEST1 and TMEM175. In each of these channels a narrow region is formed by three consecutive rings of hydrophobic sidechains and in both cases such analysis demonstrates that the crystal structures correspond to a closed state of the channel. In silico mutations of BEST1 have also been used to explore the effect of changes in the hydrophobicity of the gating constriction, demonstrating that substitution of hydrophobic sidechains with more polar sidechains results in an open gate which allows water permeation. A possible open state of the TMEM175 channel was modelled by the in silico expansion of the hydrophobic gate resulting in the wetting of the pore and free permeation of potassium ions through the channel. Finally, a preliminary study suggests that a hydrophobic gate motif can be transplanted in silico from the BEST1 channel into a simple β-barrel pore template. Overall, these results suggest that simulations of the behaviour of water in hydrophobic gates can reveal important design principles for the engineering of gates in novel biomimetic nanopores.A Newly Available Tool for Functional Annotation of Ion Channel Structures Based on Molecular Dynamics Simulations
BIOPHYSICAL JOURNAL 114:3 (2018) 134A-134A
Hydrophobic Gating: Examination of Recent Ion Channel Structures
BIOPHYSICAL JOURNAL 114:3 (2018) 134A-134A
Rare Nav1.7 variants associated with painful diabetic peripheral neuropathy
PAIN Lippincott, Williams and Wilkins 159:3 (2017) 469-480
Abstract:
Diabetic peripheral neuropathy (DPN) is a common disabling complication of diabetes. Almost half of DPN patients develop neuropathic pain for which current analgesic treatments are inadequate. Understanding the role of genetic variability in the development of painful DPN is needed for improved understanding of pain pathogenesis, for better patient stratification in clinical trials and to target therapy more appropriately. Here we examined the relationship between variants in the voltage gated sodium channel Nav1.7 and neuropathic pain in a deeply phenotyped cohort of patients with DPN. While no rare variants were found in 78 participants with painless DPN, we identified twelve rare Nav1.7 variants in ten (out of 111) study participants with painful DPN. Five of these variants had previously been described in the context of other neuropathic pain disorders and seven have not previously been linked to neuropathic pain. Those patients with rare variants reported more severe pain and greater sensitivity to pressure stimuli on quantitative sensory testing. Electrophysiological characterization of two of the novel variants (M1852T and T1596I) demonstrated gain of function changes as a consequence of markedly impaired channel fast inactivation. By using a structural model of Nav1.7 we were also able provide further insight into the structural mechanisms underlying fast activation and the role of the C-terminal domain in this process. Our observations suggest that rare Nav1.7 variants contribute to the development neuropathic pain in patients with diabetic peripheral neuropathy. Their identification should aid understanding of sensory phenotype, patient stratification and help target treatments effectively.Asymmetric mechanosensitivity in a eukaryotic ion channel
Proceedings of the National Academy of Sciences of the United States of America National Academy of Sciences 114:40 (2017) E8343-E8351