Altered functional properties of a missense variant in the TRESK K+ channel (KCNK18) associated with migraine and intellectual disability
Pflugers Archiv : European Journal of Physiology Springer 472:7 (2020) 923-930
Abstract:
Mutations in the KCNK18 gene that encodes the TRESK K2P potassium channel have previously been linked with typical familial migraine with aura. Recently, an atypical clinical case has been reported in which a male individual carrying the p.Trp101Arg (W101R) missense mutation in the KCNK18 gene was diagnosed with intellectual disability and migraine with brainstem aura. Here we report the functional characterization of this new missense variant. This mutation is located in a highly conserved residue close to the selectivity filter, and our results show although these mutant channels retain their K+ selectivity and calcineurin-dependent regulation, the variant causes an overall dramatic loss of TRESK channel function as well as an initial dominant-negative effect when co-expressed with wild-type channels in Xenopus laevis oocytes. The dramatic functional consequences of this mutation thereby support a potentially pathogenic role for this variant and provide further insight into the relationship between the structure and function of this ion channel.Induced polarization in MD simulations of the 5HT3 receptor channel
Journal of the American Chemical Society American Chemical Society 142:20 (2020) 9415-9427
Abstract:
Ion channel proteins form water-filled nanoscale pores within lipid bilayers and their properties are dependent on the complex behavior of water in a nano-confined environment. Using a simplified model of the pore of the 5HT3 receptor (5HT3R) which restrains the backbone structure to that of the parent channel protein from which it is derived we compare additive with polarizable models in describing the behavior of water in nanopores. Molecular Dynamics simulations were performed with four conformations of the channel: two closed state structures, an intermediate state, and an open state, each embedded in a phosphatidylcholine bilayer. Water density profiles revealed that for all water models, the closed and intermediate states exhibited strong dewetting within the central hydrophobic gate region of the pore. However, the open state conformation exhibited varying degrees of hydration, ranging from partial wetting for the TIP4P/2005 water model, to complete wetting for the polarizable AMOEBA14 model. Water dipole moments calculated using polarizable force fields also revealed that water molecules remaining within dewetted sections of the pore resemble gas phase water. Free energy profiles for Na+ and for Cl- ions within the open state pore revealed more rugged energy landscapes using polarizable force fields, and the hydration number profiles of these ions were also sensitive to induced polarization resulting in a substantive reduction of the number of waters within the first hydration shell of Cl- whilst it permeates the pore. These results demonstrate that induced polarization can influence the complex behavior of water and ions within nanoscale pores and provides important new insights into their chemical properties.Publisher Correction: Structure and assembly of calcium homeostasis modulator proteins
Nature Structural & Molecular Biology Springer Nature 27:3 (2020) 305-305
Annotating Ion Channel Pores: Structures, Hydrophobicity and the Threshold for Permeation
Biophysical Journal Elsevier 118:3 (2020) 272a
Structure and assembly of calcium homeostasis modulator proteins.
Nat Struct Mol Biol 27:2 (2020) 150-159