Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
CMP
Credit: Jack Hobhouse

Professor Stephen Tucker

Professor of Biophysics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Ion channels
Stephen.Tucker@physics.ox.ac.uk
Telephone: 01865 (2)72382
Biochemistry Building, room 30-090 Kavli Institute, DCHB
  • About
  • Publications

A Novel Mechanism of Voltage Sensing and Gating in K2P Potassium Channels

Biophysical Journal Elsevier 106:2 (2014) 746a

Authors:

Marcus Schewe, Markus Rapedius, Ehsan Nematian-Ardestani, Thomas Linke, Klaus Benndorf, Stephen J Tucker, Thomas Baukrowitz
More details from the publisher

A novel mechanism of voltage sensing and gating in K2P potassium channels

ACTA PHYSIOLOGICA 210 (2014) 62-62

Authors:

M Rapedius, M Schewe, E Nematian-Ardestani, T Linke, K Benndorf, SJ Tucker, T Baukrowitz
More details

A novel mechanism of voltage sensing and gating in K2P potassium channels

ACTA PHYSIOLOGICA 210 (2014) 220-222

Authors:

M Schewe, M Rapedius, E Nematian-Ardestani, T Linke, K Benndorf, SJ Tucker, T Baukrowitz
More details

Simulation-based prediction of phosphatidylinositol 4,5-bisphosphate binding to an ion channel.

Biochemistry 52:2 (2013) 279-281

Authors:

Matthias R Schmidt, Phillip J Stansfeld, Stephen J Tucker, Mark SP Sansom

Abstract:

Protein-lipid interactions regulate many membrane protein functions. Using a multiscale approach that combines coarse-grained and atomistic molecular dynamics simulations, we have predicted the binding site for the anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) on the Kir2.2 inwardly rectifying (Kir) potassium channel. Comparison of the predicted binding site to that observed in the recent PIP(2)-bound crystal structure of Kir2.2 reveals good agreement between simulation and experiment. In addition to providing insight into the mechanism by which PIP(2) binds to Kir2.2, these results help to establish the validity of this multiscale simulation approach and its future application in the examination of novel membrane protein-lipid interactions in the increasing number of high-resolution membrane protein structures that are now available.
More details from the publisher
More details

K2P and Kir K+ Channels in Physiological Bilayers

BIOPHYSICAL JOURNAL 104:2 (2013) 132A-132A

Authors:

Matthias R Schmidt, Prafulla Aryal, Stephen J Tucker, Mark SP Sansom
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet