Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
DNA tetrahedron

Professor Andrew Turberfield

Professor of Biological Physics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Nucleic acid nanotechnology
Andrew.Turberfield@physics.ox.ac.uk
  • About
  • Publications

Reversible logic circuits made of DNA.

J Am Chem Soc 133:50 (2011) 20080-20083

Authors:

Anthony J Genot, Jonathan Bath, Andrew J Turberfield

Abstract:

We report reversible logic circuits made of DNA. The circuits are based on an AND gate that is designed to be thermodynamically and kinetically reversible and to respond nonlinearly to the concentrations of its input molecules. The circuits continuously recompute their outputs, allowing them to respond to changing inputs. They are robust to imperfections in their inputs.
More details from the publisher
Details from ORA
More details

DNA cage delivery to mammalian cells.

ACS Nano 5:7 (2011) 5427-5432

Authors:

Anthony S Walsh, HaiFang Yin, Christoph M Erben, Matthew JA Wood, Andrew J Turberfield

Abstract:

DNA cages are nanometer-scale polyhedral structures formed by self-assembly from synthetic DNA oligonucleotides. Potential applications include in vivo imaging and the targeted delivery of macromolecules into living cells. We report an investigation of the ability of a model cage, a DNA tetrahedron, to enter live cultured mammalian cells. Cultured human embryonic kidney cells were treated with a range of fluorescently labeled DNA tetrahedra and subsequently examined using confocal microscopy and flow cytometry. Substantial uptake of tetrahedra into cells was observed both when the cells were treated with tetrahedra alone and when the cells were treated with a mixture of tetrahedra and a transfection reagent. Analysis of the subcellular localization of transfected tetrahedra using confocal microscopy and organelle staining indicates that the cages are located in the cytoplasm. FRET experiments indicate that the DNA cages remain substantially intact within the cells for at least 48 h after transfection. This is a first step toward the use of engineered DNA nanostructures to deliver and control the activity of cargoes within cells.
More details from the publisher
More details

DNA nanotechnology: geometrical self-assembly.

Nat Chem 3:8 (2011) 580-581
More details from the publisher
More details

The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography

Advanced Functional Materials 21:9 (2011) 1593-1601

Authors:

RG Denning, CF Blanford, H Urban, H Bharaj, DN Sharp, AJ Turberfield

Abstract:

The negative-tone epoxy photoresist, SU-8, expands ≈1% by volume after postexposure baking. However, if the maximum optical fl uence is comparable to that at the insolubility threshold, as in a holographic exposure, the developed resist shrinks ( ≈35% by volume) due to the removal of light oligomers not incorporated into the polymeric network. IR spectroscopy shows that, at this level of exposure, only 15% of the epoxy groups in the insoluble polymer have reacted; consequently microstructural elements soften and collapse at > 100 °C. When the light oligomers are removed, the sensitivity of the resist is unchanged, provided that 5% (w/w) of a high-molecular-weight reactive plasticizer (glycidoxy-terminated polyethylene glycol) is added, but it shrinks less on development and, when used as a photonic crystal template, shows improved uniformity with less cracking and buckling. Reinforcing the polymer network by reaction with the polyfunctional amine (bis- N , N′ -(3-aminopropyl) ethylenediamine) increases the extent of cross-linking and the thermal stability, allowing inverse replicas of photonic crystal templates to be fabricated from both Al:ZnO and Zr3N4 using atomic layer deposition at temperatures up to 200 °C. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
More details from the publisher
More details

A programmable molecular robot.

Nano Lett 11:3 (2011) 982-987

Authors:

Richard A Muscat, Jonathan Bath, Andrew J Turberfield

Abstract:

We have developed a programmable and auton-omous molecular robot whose motion is fueled by DNA hybridization. Instructions determining the path to be followed are programmed into the fuel molecules, allowing precise control of cargo motion on a branched track.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet