Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
DNA tetrahedron

Professor Andrew Turberfield

Professor of Biological Physics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Nucleic acid nanotechnology
Andrew.Turberfield@physics.ox.ac.uk
  • About
  • Publications

A self-assembled DNA bipyramid.

J Am Chem Soc 129:22 (2007) 6992-6993

Authors:

Christoph M Erben, Russell P Goodman, Andrew J Turberfield
More details from the publisher
More details

DNA nanomachines.

Nat Nanotechnol 2:5 (2007) 275-284

Authors:

Jonathan Bath, Andrew J Turberfield

Abstract:

We are learning to build synthetic molecular machinery from DNA. This research is inspired by biological systems in which individual molecules act, singly and in concert, as specialized machines: our ambition is to create new technologies to perform tasks that are currently beyond our reach. DNA nanomachines are made by self-assembly, using techniques that rely on the sequence-specific interactions that bind complementary oligonucleotides together in a double helix. They can be activated by interactions with specific signalling molecules or by changes in their environment. Devices that change state in response to an external trigger might be used for molecular sensing, intelligent drug delivery or programmable chemical synthesis. Biological molecular motors that carry cargoes within cells have inspired the construction of rudimentary DNA walkers that run along self-assembled tracks. It has even proved possible to create DNA motors that move autonomously, obtaining energy by catalysing the reaction of DNA or RNA fuels.
More details from the publisher
Details from ORA
More details

PHYS 393-Engineering entropy-driven reactions and networks catalyzed by DNA

ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 234 (2007)

Authors:

David Yu Zhang, Andrew J Turberfield, Bernard Yurke, Erik Winfree
More details

Single-molecule protein encapsulation in a rigid DNA cage.

Angew Chem Int Ed Engl 45:44 (2006) 7414-7417

Authors:

Christoph M Erben, Russell P Goodman, Andrew J Turberfield
More details from the publisher
More details

DNA hairpins: fuel for autonomous DNA devices.

Biophys J 91:8 (2006) 2966-2975

Authors:

Simon J Green, Daniel Lubrich, Andrew J Turberfield

Abstract:

We present a study of the hybridization of complementary DNA hairpin loops, with particular reference to their use as fuel for autonomous DNA devices. The rate of spontaneous hybridization between complementary hairpins can be reduced by increasing the neck length or decreasing the loop length. Hairpins with larger loops rapidly form long-lived kissed complexes. Hairpin loops may be opened by strand displacement using an opening strand that contains the same sequence as half of the neck and a "toehold" complementary to a single-stranded domain adjacent to the neck. We find loop opening via an external toehold to be 10-100 times faster than via an internal toehold. We measure rates of loop opening by opening strands that are at least 1000 times faster than the spontaneous interaction between hairpins. We discuss suitable choices for loop, neck, and toehold length for hairpin loops to be used as fuel for autonomous DNA devices.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet