Energy diffusion and advection coefficients in kinetic simulations of relativistic plasma turbulence
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:2 (2025) 1842-1863
Abstract:
ABSTRACT Turbulent, relativistic non-thermal plasmas are ubiquitous in high-energy astrophysical systems, as inferred from broad-band non-thermal emission spectra. The underlying turbulent non-thermal particle acceleration (NTPA) processes have traditionally been modelled with a Fokker–Planck (FP) diffusion–advection equation for the particle energy distribution. We test FP-type NTPA theories by performing and analysing particle-in-cell simulations of turbulence in collisionless relativistic pair plasma. By tracking large numbers of particles in simulations with different initial magnetization and system size, we first test and confirm the applicability of the FP framework. We then measure the FP energy diffusion (D) and advection (A) coefficients as functions of particle energy $\gamma m c^2$, and compare their dependence to theoretical predictions. At high energies, we robustly find $D \sim \gamma ^2$ for all cases. Hence, we fit $D = D_0 \gamma ^2$ and find a scaling consistent with $D_0 \sim \sigma ^{3/2}$ at low instantaneous magnetization $\sigma (t)$, flattening to $D_0 \sim \sigma$ at higher $\sigma \sim 1$. We also find that the power-law index $\alpha (t)$ of the particle energy distribution converges exponentially in time. We build and test an analytic model connecting the FP coefficients and $\alpha (t)$, predicting $A(\gamma) \sim \gamma \log \gamma$. We confirm this functional form in our measurements of $A(\gamma ,t)$, which allows us to predict $\alpha (t)$ through the model relations. Our results suggest that the basic second-order Fermi acceleration model, which predicts $D_0 \sim \sigma$, may not be a complete description of NTPA in turbulent plasmas. These findings encourage further application of tracked particles and FP coefficients as a diagnostic in kinetic simulations of various astrophysically relevant plasma processes like collisionless shocks and magnetic reconnection.Magnetic field generation in multipetawatt laser-solid interactions
Physical Review Research American Physical Society (APS) 7:1 (2025) 013294
Abstract:
First-principles Measurement of Ion and Electron Energization in Collisionless Accretion Flows
The Astrophysical Journal Letters American Astronomical Society 982:1 (2025) L28
Abstract:
We present the largest 3D particle-in-cell shearing-box simulations of turbulence driven by the magnetorotational instability, for the first time employing the realistic proton-to-electron mass ratio. We investigate the energy partition between relativistically hot electrons and subrelativistic ions in turbulent accreting plasma, a regime relevant to collisionless, radiatively inefficient accretion flows around supermassive black holes such as those targeted by the Event Horizon Telescope. We provide a simple empirical formula to describe the measured heating ratio between ions and electrons, which can be used for more accurate global modeling of accretion flows with standard fluid approaches such as general-relativistic magnetohydrodynamics.X-ray imaging and electron temperature evolution in laser-driven magnetic reconnection experiments at the national ignition facility
Physics of Plasmas 31:8 (2024)
Abstract:
We present results from x-ray imaging of high-aspect-ratio magnetic reconnection experiments driven at the National Ignition Facility. Two parallel, self-magnetized, elongated laser-driven plumes are produced by tiling 40 laser beams. A magnetic reconnection layer is formed by the collision of the plumes. A gated x-ray framing pinhole camera with micro-channel plate detector produces multiple images through various filters of the formation and evolution of both the plumes and current sheet. As the diagnostic integrates plasma self-emission along the line of sight, two-dimensional electron temperature maps ⟨ T e ⟩ Y are constructed by taking the ratio of intensity of these images obtained with different filters. The plumes have a characteristic temperature ⟨ T e ⟩ Y = 240 ± 20 eV at 2 ns after the initial laser irradiation and exhibit a slow cooling up to 4 ns. The reconnection layer forms at 3 ns with a temperature ⟨ T e ⟩ Y = 280 ± 50 eV as the result of the collision of the plumes. The error bars of the plumes and current sheet temperatures separate at 4 ns, showing the heating of the current sheet from colder inflows. Using a semi-analytical model, we survey various heating mechanisms in the current sheet. We find that reconnection energy conversion would dominate at low density ( n e ≲ 7 × 10 18 cm−3) and electron-ion collisional drag at high-density ( ≳ 10 19 cm−3).Collisionless Magnetorotational Turbulence in Pair Plasmas: Steady-State Dynamics, Particle Acceleration, and Radiative Cooling.
Physical review letters 133:4 (2024) 045202