The sizes of bright Lyman-break galaxies at z ≃ 3–5 with JWST PRIMER
The bright end of the galaxy luminosity function at z ≃ 7 from the VISTA VIDEO survey
Abstract:
We have conducted a search for z ≃ 7 Lyman-break galaxies over 8.2 deg2 of near-infrared imaging from the Visible and Infrared Survey Telescope for Astronomy (VISTA) Deep Extragalactic Observations (VIDEO) survey in the XMM–Newton-Large Scale Structure (XMM-LSS) and the Extended Chandra Deep Field-South (ECDF-S) fields. Candidate galaxies were selected from a full photometric redshift analysis down to a Y + J depth of 25.3 (5σ), utilizing deep auxiliary optical and Spitzer/Infrared Array Camera (IRAC) data to remove brown dwarf and red interloper galaxy contaminants. Our final sample consists of 28 candidate galaxies at 6.5 ≤ z ≤ 7.5 with −23.5 ≤ MUV ≤ −21.6. We derive stellar masses of 9.1 ≤ log10(M⋆/M⊙) ≤ 10.9 for the sample, suggesting that these candidates represent some of the most massive galaxies known at this epoch. We measure the rest-frame ultraviolet (UV) luminosity function (LF) at z ≃ 7, confirming previous findings of a gradual decline in number density at the bright end (MUV < −22) that is well described by a double power law (DPL). We show that quasar contamination in this magnitude range is expected to be minimal, in contrast to conclusions from recent pure-parallel Hubble studies. Our results are up to a factor of 10 lower than previous determinations from optical-only ground-based studies at MUV ≲ −23. We find that the inclusion of YJHKs photometry is vital for removing brown dwarf contaminants, and z ≃ 7 samples based on red optical data alone could be highly contaminated (≳50 per cent). In comparison with other robust z > 5 samples, our results further support little evolution in the very bright end of the rest-frame UV LF from z = 5–10, potentially signalling a lack of mass quenching and/or dust obscuration in the most massive galaxies in the first Gyr.
The total rest-frame UV luminosity function from 3 < z < 5: a simultaneous study of AGN and galaxies from −28 < MUV < −16
Abstract:
We present measurements of the rest-frame ultraviolet luminosity function (LF) at redshifts z = 3, z = 4, and z = 5, using 96894, 38655, and 7571 sources, respectively, to map the transition between active galactic nuclei (AGN) and galaxy-dominated ultraviolet emission shortly after the epoch of reionization (EoR). Sources are selected using a comprehensive photometric redshift approach, using 10 deg2 of deep extragalactic legacy fields covered by both HSC and VISTA. The use of template fitting spanning a wavelength range of 0.3–2.4 μm achieves 80–90 per cent completeness, much higher than the classical colour–colour cut methodology. The measured LF encompasses −26 < MUV < −19.25. This is further extended to −28.5 < MUV < −16 using complementary results from other studies, allowing for the simultaneous fitting of the combined AGN and galaxy LF. We find that there are fewer UV luminous galaxies (MUV < −22) at z ∼ 3 than z ∼ 4, indicative of an onset of widespread quenching alongside dust obscuration, and that the evolution of the AGN LF is very rapid, with their number density rising by around two orders of magnitude from 3 < z < 6. It remains difficult to determine if a double power law functional form is preferred over the Schechter function to describe the galaxy UV LF. Estimating the hydrogen ionizing photon budget from our UV LFs, we find that AGN can contribute to, but cannot solely maintain, the reionization of the Universe at z = 3–5. However, the rapidly evolving AGN LF strongly disfavours a significant contribution within the EoR.