MIGHTEE-H i: the direct detection of neutral hydrogen in galaxies at z > 0.25
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:1 (2025) 193-210
Abstract:
ABSTRACT Atomic hydrogen constitutes the gas reservoir from which molecular gas and star formation in galaxies emerges. However, the weakness of the line means it has been difficult to directly detect in all but the very local Universe. Here, we present results from the first search using the MeerKAT International Tiered Extragalactic Exploration (MIGHTEE) Survey for high-redshift ($z>0.25$) H i emission from individual galaxies. By searching for 21-cm emission centred on the position and redshift of optically selected emission-line galaxies we overcome difficulties that hinder untargeted searches. We detect 11 galaxies at $z>0.25$, forming the first sample of $z>0.25$ detections with an interferometer, with the highest redshift detection at $z = 0.3841$. We find they have much larger H i masses than their low-redshift H i-selected counterparts for a given stellar mass. This can be explained by the much larger cosmological volume probed at these high redshifts, and does not require any evolution of the H i mass function. We make the first-ever measurement of the baryonic Tully–Fisher relation (bTFr) with H i at $z>0.25$ and find consistency with the local bTFr, but with tentative evidence of a flattening in the relation at these redshifts for higher-mass objects. This may signify evolution, in line with predictions from hydrodynamic simulations, or that the molecular gas mass in these high-mass galaxies could be significant. This study paves the way for future studies of H i beyond the local Universe, using both searches targeted at known objects and via pure H i selection.Evidence for inverse Compton scattering in high-redshift Lyman-break galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 543:1 (2025) 507-517
Abstract:
Radio continuum emission provides a unique opportunity to study star formation unbiased by dust obscuration. However, if radio observations are to be used to accurately trace star formation to high redshifts, it is crucial that the physical processes that affect the radio emission from star-forming galaxies are well understood. While inverse Compton (IC) losses from the cosmic microwave background (CMB) are negligible in the local universe, the rapid increase in the strength of the CMB energy density with redshift [] means that this effect becomes increasingly important at . Using a sample of high-redshift () Lyman-break galaxies selected in the rest-frame ultraviolet (UV), we have stacked radio observations from the MIGHTEE survey to estimate their 1.4-GHz flux densities. We find that for a given rest-frame UV magnitude, the 1.4-GHz flux density and luminosity decrease with redshift. We compare these results to the theoretical predicted effect of energy losses due to IC scattering off the CMB, and find that the observed decrease is consistent with this explanation. We discuss other possible causes for the observed decrease in radio flux density with redshift at a given UV magnitude, such as a top-heavy initial mass function at high redshift or an evolution of the dust properties, but suggest that IC scattering is the most compelling explanation.Galaxy size and mass build-up in the first 2 Gyr of cosmic history from multi-wavelength JWST NIRCam imaging
Astronomy & Astrophysics EDP Sciences 698 (2025) a30
JWST PRIMER: a lack of outshining in four normal z = 4 − 6 galaxies from the ALMA-CRISTAL Survey
Monthly Notices of the Royal Astronomical Society Oxford University Press 539:3 (2025) 2685-2706
Abstract:
We present a spatially resolved analysis of four star-forming galaxies at using data from the JWST Public Release Imaging for Extragalactic Research (PRIMER) and ALMA-[C II] Resolved ISm in STar-forming galaxies with ALma (CRISTAL) surveys to probe the stellar and interstellar medium properties on the sub- scale. In the JWST NIRCam imaging we find that the galaxies are composed of multiple clumps (between 2 and ∼8) separated by , with comparable morphologies and sizes in the rest-frame ultraviolet (UV) and optical. Using BAGPIPES to perform pixel-by-pixel spectral energy distribution (SED) fitting to the JWST data, we show that the star formation rate (SFR) () and stellar mass ( ) derived from the resolved analysis are in close () agreement with those obtained by fitting the integrated photometry. In contrast to studies of lower mass sources, we thus find a reduced impact of outshining of the older (more massive) stellar populations in these normal galaxies. Our JWST analysis recovers bluer rest-frame UV slopes () and younger ages () than archival values. We find that the dust continuum from ALMA-CRISTAL seen in two of these galaxies correlates, as expected, with regions of redder rest-frame UV slopes and the SED-derived , as well as the peak in the stellar mass map. We compute the resolved –relation, showing that the IRX is consistent with the local starburst attenuation curve and further demonstrating the presence of an inhomogeneous dust distribution within the galaxies. A comparison of the CRISTAL sources to those from the FirstLight zoom-in simulation of galaxies with the same and SFR reveals similar age and colour gradients, suggesting that major mergers may be important in the formation of clumpy galaxies at this epoch.The sizes of bright Lyman-break galaxies at z ≃ 3–5 with JWST PRIMER
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 533:3 (2024) 3724-3741