Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Rohan Varadaraj

Postdoctoral Research Assistant

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
rohan.varadaraj@physics.ox.ac.uk
  • About
  • Publications

The bright end of the galaxy luminosity function at z ≃ 7 from the VISTA VIDEO survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 524:3 (2023) 4586-4613

Authors:

Rg Varadaraj, Raa Bowler, Mj Jarvis, Nj Adams, B Haussler

Abstract:

We have conducted a search for z ≃ 7 Lyman-break galaxies over 8.2 deg2 of near-infrared imaging from the Visible and Infrared Survey Telescope for Astronomy (VISTA) Deep Extragalactic Observations (VIDEO) survey in the XMM–Newton-Large Scale Structure (XMM-LSS) and the Extended Chandra Deep Field-South (ECDF-S) fields. Candidate galaxies were selected from a full photometric redshift analysis down to a Y + J depth of 25.3 (5σ), utilizing deep auxiliary optical and Spitzer/Infrared Array Camera (IRAC) data to remove brown dwarf and red interloper galaxy contaminants. Our final sample consists of 28 candidate galaxies at 6.5 ≤ z ≤ 7.5 with −23.5 ≤ MUV ≤ −21.6. We derive stellar masses of 9.1 ≤ log10(M⋆/M⊙) ≤ 10.9 for the sample, suggesting that these candidates represent some of the most massive galaxies known at this epoch. We measure the rest-frame ultraviolet (UV) luminosity function (LF) at z ≃ 7, confirming previous findings of a gradual decline in number density at the bright end (MUV < −22) that is well described by a double power law (DPL). We show that quasar contamination in this magnitude range is expected to be minimal, in contrast to conclusions from recent pure-parallel Hubble studies. Our results are up to a factor of 10 lower than previous determinations from optical-only ground-based studies at MUV ≲ −23. We find that the inclusion of YJHKs photometry is vital for removing brown dwarf contaminants, and z ≃ 7 samples based on red optical data alone could be highly contaminated (≳50 per cent). In comparison with other robust z > 5 samples, our results further support little evolution in the very bright end of the rest-frame UV LF from z = 5–10, potentially signalling a lack of mass quenching and/or dust obscuration in the most massive galaxies in the first Gyr.

More details from the publisher
Details from ORA
More details

The total rest-frame UV luminosity function from 3 < z < 5: a simultaneous study of AGN and galaxies from −28 < MUV < −16

Monthly Notices of the Royal Astronomical Society Oxford University Press 523:1 (2023) 327-346

Authors:

Nj Adams, Raa Bowler, Mj Jarvis, Rg Varadaraj, B Haussler

Abstract:

We present measurements of the rest-frame ultraviolet luminosity function (LF) at redshifts z = 3, z = 4, and z = 5, using 96894, 38655, and 7571 sources, respectively, to map the transition between active galactic nuclei (AGN) and galaxy-dominated ultraviolet emission shortly after the epoch of reionization (EoR). Sources are selected using a comprehensive photometric redshift approach, using 10 deg2 of deep extragalactic legacy fields covered by both HSC and VISTA. The use of template fitting spanning a wavelength range of 0.3–2.4 μm achieves 80–90 per cent completeness, much higher than the classical colour–colour cut methodology. The measured LF encompasses −26 < MUV < −19.25. This is further extended to −28.5 < MUV < −16 using complementary results from other studies, allowing for the simultaneous fitting of the combined AGN and galaxy LF. We find that there are fewer UV luminous galaxies (MUV < −22) at z ∼ 3 than z ∼ 4, indicative of an onset of widespread quenching alongside dust obscuration, and that the evolution of the AGN LF is very rapid, with their number density rising by around two orders of magnitude from 3 < z < 6. It remains difficult to determine if a double power law functional form is preferred over the Schechter function to describe the galaxy UV LF. Estimating the hydrogen ionizing photon budget from our UV LFs, we find that AGN can contribute to, but cannot solely maintain, the reionization of the Universe at z = 3–5. However, the rapidly evolving AGN LF strongly disfavours a significant contribution within the EoR.

More details from the publisher
Details from ORA
More details

The bright end of the galaxy luminosity function at $z \simeq 7$ from the VISTA VIDEO survey

(2023)

Authors:

RG Varadaraj, RAA Bowler, MJ Jarvis, NJ Adams, B Häußler
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet