Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Natural three-qubit interactions in one-way quantum computing

(2005)

Authors:

MS Tame, M Paternostro, MS Kim, V Vedral
More details from the publisher

Natural three-qubit interactions in one-way quantum computing

ArXiv quant-ph/0507173 (2005)

Authors:

MS Tame, M Paternostro, MS Kim, V Vedral

Abstract:

We address the effects of natural three-qubit interactions on the computational power of one-way quantum computation (\QC). A benefit of using more sophisticated entanglement structures is the ability to construct compact and economic simulations of quantum algorithms with limited resources. We show that the features of our study are embodied by suitably prepared optical lattices, where effective three-spin interactions have been theoretically demonstrated. We use this to provide a compact construction for the Toffoli gate. Information flow and two-qubit interactions are also outlined, together with a brief analysis of relevant sources of imperfection.
Details from ArXiV
More details from the publisher

Natural multiparticle entanglement in a Fermi gas.

Phys Rev Lett 95:3 (2005) 030503

Authors:

Christian Lunkes, Caslav Brukner, Vlatko Vedral

Abstract:

We investigate multipartite entanglement in a noninteracting fermion gas, as a function of fermion separation, starting from the many particle fermion density matrix. We prove that all multiparticle entanglement can be built only out of two-fermion entanglement. Although from the Pauli exclusion principle we would always expect entanglement to decrease with fermion distance, we surprisingly find the opposite effect for certain fermion configurations. The von Neumann entropy is found to be proportional to the volume for a large number of particles even when they are arbitrarily close to each other. We will illustrate our results using different configurations of two, three, and four fermions at zero temperature although all our results can be applied to any temperature and any number of particles.
More details from the publisher
More details

Geometric phase induced by a cyclically evolving squeezed vacuum reservoir

(2005)

Authors:

Angelo Carollo, G Massimo Palma, Artur Lozinski, Marcelo Franca Santos, Vlatko Vedral
More details from the publisher

The Second Quantized Quantum Turing Machine and Kolmogorov Complexity

(2005)

Authors:

Caroline Rogers, Vlatko Vedral
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 120
  • Page 121
  • Page 122
  • Page 123
  • Current page 124
  • Page 125
  • Page 126
  • Page 127
  • Page 128
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet