Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Eavesdropping on practical quantum cryptography

(2002)

Authors:

Mark Williamson, Vlatko Vedral
More details from the publisher

Classicality of spin-coherent states via entanglement and distinguishability

(2002)

Authors:

D Markham, V Vedral
More details from the publisher

The role of relative entropy in quantum information theory

Reviews of Modern Physics 74:1 (2002) 197-234

Abstract:

Quantum mechanics and information theory are among the most important scientific discoveries of the last century. Although these two areas initially developed separately, it has emerged that they are in fact intimately related. In this review the author shows how quantum information theory extends traditional information theory by exploring the limits imposed by quantum, rather than classical, mechanics on information storage and transmission. The derivation of many key results differentiates this review from the usual presentation in that they are shown to follow logically from one crucial property of relative entropy. Within the review, optimal bounds on the enhanced speed that quantum computers can achieve over their classical counterparts are outlined using information-theoretic arguments. In addition, important implications of quantum information theory for thermodynamics and quantum measurement are intermittently discussed. A number of simple examples and derivations, including quantum superdense coding, quantum teleportation, and Deutsch's and Grover's algorithms, are also included.
More details from the publisher
More details

Energy Requirements for Quantum Data Compression and 1-1 Coding

(2002)

Authors:

Luke Rallan, Vlatko Vedral
More details from the publisher

Classical Correlations and Entanglement in Quantum Measurements

(2002)
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 138
  • Page 139
  • Page 140
  • Page 141
  • Current page 142
  • Page 143
  • Page 144
  • Page 145
  • Page 146
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet