Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Theory of Magnetism and Many-Body Quantum Mechanics

Chapter in Solid State Quantum Information — An Advanced Textbook, World Scientific Publishing (2018) 49-110

Authors:

Vlatko Vedral, Wonmin Son
More details from the publisher

Maximum one-shot dissipated work from Rényi divergences.

Physical review. E 97:5-1 (2018) 052135-052135

Authors:

Nicole Yunger Halpern, Andrew JP Garner, Oscar CO Dahlsten, Vlatko Vedral

Abstract:

Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.
More details from the publisher
Details from ORA
More details
More details

Introductory Quantum Physics and Relativity

World Scientific Publishing, 2018

Authors:

Jacob Dunningham, Vlatko Vedral
More details from the publisher

Squeezing Enhances Quantum Synchronization.

Physical review letters 120:16 (2018) 163601-163601

Authors:

Sameer Sonar, Michal Hajdušek, Manas Mukherjee, Rosario Fazio, Vlatko Vedral, Sai Vinjanampathy, Leong-Chuan Kwek

Abstract:

It is desirable to observe synchronization of quantum systems in the quantum regime, defined by the low number of excitations and a highly nonclassical steady state of the self-sustained oscillator. Several existing proposals of observing synchronization in the quantum regime suffer from the fact that the noise statistics overwhelm synchronization in this regime. Here, we resolve this issue by driving a self-sustained oscillator with a squeezing Hamiltonian instead of a harmonic drive and analyze this system in the classical and quantum regime. We demonstrate that strong entrainment is possible for small values of squeezing, and in this regime, the states are nonclassical. Furthermore, we show that the quality of synchronization measured by the FWHM of the power spectrum is enhanced with squeezing.
More details from the publisher
Details from ORA
More details
More details

Quantum-gravity effects could in principle be witnessed in neutrino-like oscillations

(2018)

Authors:

C Marletto, V Vedral, D Deutsch
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • Current page 36
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet