Entanglement at the quantum phase transition in a harmonic lattice
New Journal of Physics 12 (2010)
Abstract:
The entanglement properties of phase transition in a twodimensional harmonic lattice, similar to the one observed in recent ion trap experiments, are discussed for both finite number of particles and thermodynamical limit. We show that for the ground state at the critical value of the trapping potential, two entanglement measures, the negativity between two neighbouring sites and the block entropy for blocks of size 1, 2 and 3, change abruptly. Entanglement thus indicates quantum phase transitions in general, not only in the finite-dimensional case considered inWu et al (2004 Phys. Rev. Lett. 93 250404). Finally, we consider the thermal state and compare its exact entanglement with a temperature entanglement witness introduced in Anders (2008 Phys. Rev. A 77 062102). © IOP Publishing Ltd. and Deutsche Physikalische Gesellschaft.Unified view of quantum and classical correlations.
Phys Rev Lett 104:8 (2010) 080501
Abstract:
We discuss the problem of the separation of total correlations in a given quantum state into entanglement, dissonance, and classical correlations using the concept of relative entropy as a distance measure of correlations. This allows us to put all correlations on an equal footing. Entanglement and dissonance, whose definition is introduced here, jointly belong to what is known as quantum discord. Our methods are completely applicable for multipartite systems of arbitrary dimensions. We investigate additivity relations between different correlations and show that dissonance may be present in pure multipartite states.Entanglement and topological order in self-dual cluster states
(2010)
Entanglement in disordered and non-equilibrium systems
Physica E: Low-Dimensional Systems and Nanostructures 42:3 (2010) 359-362