Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Prof Roman Walczak

Emeritus Professor

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Particle Physics

Research groups

  • Laser-plasma accelerator group
Roman.Walczak@physics.ox.ac.uk
Denys Wilkinson Building, room 659
  • About
  • Publications

Measurement of the decay of laser-driven linear plasma wakefields

Physical Review E American Physical Society 108:5 (2023) 055211

Authors:

Jakob Jonnerby, Alexander von Boetticher, James Holloway, L Corner, Alexander Picksley, Ashley Jacob Ross, Rj Shalloo, C Thornton, N Bourgeois, Roman Walczak, Simon M Hooker

Abstract:

We present measurements of the temporal decay rate of one-dimensional (1D), linear Langmuir waves excited by an ultrashort laser pulse. Langmuir waves with relative amplitudes of approximately 6% were driven by 1.7J, 50 fs laser pulses in hydrogen and deuterium plasmas of density ne0 = 8.4 × 1017 cm−3. The wakefield lifetimes were measured to be τH2wf = (9 ± 2) ps and τ D2wf = (16 ± 8) ps, respectively, for hydrogen and deuterium. The experimental results were found to be in good agreement with 2D particle-in-cell simulations. In addition to being of fundamental interest, these results are particularly relevant to the development of laser wakefield accelerators and wakefield acceleration schemes using multiple pulses, such as multipulse laser wakefield accelerators.
More details from the publisher
Details from ORA
More details
More details

Multi-GeV Wakefield Acceleration in a Plasma-Modulated Plasma Accelerator

(2023)

Authors:

Johannes J van de Wetering, Simon M Hooker, Roman Walczak
More details from the publisher
Details from ArXiV

Resonant excitation of plasma waves in a plasma channel

(2023)

Authors:

Aimee J Ross, James Chappell, Johannes J van de Wetering, James Cowley, Emily Archer, Nicolas Bourgeois, Laura Corner, David R Emerson, Linus Feder, Xiao J Gu, Oscar Jakobsson, Harry Jones, Alexander Picksley, Linus Reid, Wei-Ting Wang, Roman Walczak, Simon M Hooker
Details from ArXiV
More details from the publisher

Demonstration of tunability of HOFI waveguides via start-to-end simulations

Physical Review Research American Physical Society 5:3 (2023) 33112

Authors:

Sm Mewes, Gj Boyle, A Ferran Pousa, Rj Shalloo, J Osterhoff, C Arran, L Corner, R Walczak, SM Hooker, M Thévenet

Abstract:

In recent years, hydrodynamic optical-field-ionized (HOFI) channels have emerged as a promising technique to create laser waveguides suitable for guiding tightly focused laser pulses in a plasma, as needed for laser-plasma accelerators. While experimental advances in HOFI channels continue to be made, the underlying mechanisms and the roles of the main parameters remain largely unexplored. In this paper, we propose a start-to-end simulation pipeline of the HOFI channel formation and the resulting laser guiding and use it to explore the underlying physics and the tunability of HOFI channels. This approach is benchmarked against experimental measurements. HOFI channels are shown to feature excellent guiding properties over a wide range of parameters, making them a promising and tunable waveguide option for laser-plasma accelerators.
More details from the publisher
Details from ORA
More details

All-optical GeV electron bunch generation in a laser-plasma accelerator via truncated-channel injection

(2023)

Authors:

A Picksley, J Chappell, E Archer, N Bourgeois, J Cowley, DR Emerson, L Feder, XJ Gu, O Jakobsson, AJ Ross, W Wang, R Walczak, SM Hooker
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet