Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Ian Walmsley CBE FRS FCGI

Director, Oxford Quantum Institute

Sub department

  • Atomic and Laser Physics
Ian.Walmsley@physics.ox.ac.uk
Telephone: 01865 772209
  • About
  • Publications

Direct observation of sub-binomial light

Physical Review Letters 110:17 (2013)

Authors:

TJ Bartley, G Donati, XM Jin, A Datta, M Barbieri, IA Walmsley

Abstract:

Nonclassical states of light are necessary resources for quantum technologies such as cryptography, computation and the definition of metrological standards. Observing signatures of nonclassicality generally requires inferring either the photon number distribution or a quasiprobability distribution indirectly from a set of measurements. Here, we report an experiment in which the nonclassical character of families of quantum states is assessed by direct inspection of the outcomes from a multiplexed photon counter. This scheme does not register the actual photon number distribution; the statistics of the detector clicks alone serve as a witness of nonclassicality, as proposed by Sperling et al.. Our work paves a way for the practical characterization of increasingly sophisticated states and detectors. © 2013 American Physical Society.
More details from the publisher
More details
More details

Enhancing multiphoton rates with quantum memories

Physical Review Letters 110:13 (2013)

Authors:

J Nunn, NK Langford, WS Kolthammer, TFM Champion, MR Sprague, PS Michelberger, XM Jin, DG England, IA Walmsley

Abstract:

Single photons are a vital resource for optical quantum information processing. Efficient and deterministic single photon sources do not yet exist, however. To date, experimental demonstrations of quantum processing primitives have been implemented using nondeterministic sources combined with heralding and/or postselection. Unfortunately, even for eight photons, the data rates are already so low as to make most experiments impracticable. It is well known that quantum memories, capable of storing photons until they are needed, are a potential solution to this "scaling catastrophe." Here, we analyze in detail the benefits of quantum memories for producing multiphoton states, showing how the production rates can be enhanced by many orders of magnitude. We identify the quantity ηB as the most important figure of merit in this connection, where η and B are the efficiency and time-bandwidth product of the memories, respectively. © 2013 American Physical Society.
More details from the publisher
More details
More details
Details from ArXiV

Boson sampling on a photonic chip.

Science 339:6121 (2013) 798-801

Authors:

Justin B Spring, Benjamin J Metcalf, Peter C Humphreys, W Steven Kolthammer, Xian-Min Jin, Marco Barbieri, Animesh Datta, Nicholas Thomas-Peter, Nathan K Langford, Dmytro Kundys, James C Gates, Brian J Smith, Peter GR Smith, Ian A Walmsley

Abstract:

Although universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We constructed a quantum boson-sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmarked our QBSM with three and four photons and analyzed sources of sampling inaccuracy. Scaling up to larger devices could offer the first definitive quantum-enhanced computation.
More details from the publisher
More details
Details from ArXiV

Strategies for enhancing quantum entanglement by local photon subtraction

Physical Review A - Atomic, Molecular, and Optical Physics 87:2 (2013)

Authors:

TJ Bartley, PJD Crowley, A Datta, J Nunn, L Zhang, I Walmsley

Abstract:

Subtracting photons from a two-mode squeezed state is a well-known method to increase entanglement. We analyze different strategies of local photon subtraction from a two-mode squeezed state in terms of entanglement gain and success probability. We develop a general framework that incorporates imperfections and losses in all stages of the process: before, during, and after subtraction. By combining all three effects into a single efficiency parameter, we provide analytical and numerical results for subtraction strategies using photon-number-resolving and threshold detectors. We compare the entanglement gain afforded by symmetric and asymmetric subtraction scenarios across the two modes. For a given amount of loss, we identify an optimized set of parameters, such as initial squeezing and subtraction beam splitter transmissivity, that maximize the entanglement gain rate. We identify regimes for which asymmetric subtraction of different Fock states on the two modes outperforms symmetric strategies. In the lossless limit, subtracting a single photon from one mode always produces the highest entanglement gain rate. In the lossy case, the optimal strategy depends strongly on the losses on each mode individually, such that there is no general optimal strategy. Rather, taking losses on each mode as the only input parameters, we can identify the optimal subtraction strategy and required beam splitter transmissivities and initial squeezing parameter. Finally, we discuss the implications of our results for the distillation of continuous-variable quantum entanglement. © 2013 American Physical Society.
More details from the publisher
More details

Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths

Optics Express 21:1 (2013) 893-902

Authors:

CM Natarajan, L Zhang, H Coldenstrodt-Ronge, G Donati, SN Dorenbos, V Zwiller, IA Walmsley, RH Hadfield

Abstract:

Superconducting nanowire single-photon detectors (SNSPDs) are widely used in telecom wavelength optical quantum information science applications. Quantum detector tomography allows the positive-operator-valued measure (POVM) of a single-photon detector to be determined. We use an all-fiber telecom wavelength detector tomography test bed to measure detector characteristics with respect to photon flux and polarization, and hence determine the POVM. We study the SNSPD both as a binary detector and in an 8-bin, fiber based, Time-Multiplexed (TM) configuration at repetition rates up to 4 MHz. The corresponding POVMs provide an accurate picture of the photon number resolving capability of the TM-SNSPD. © 2013 Optical Society of America.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet