Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Ian Walmsley CBE FRS FCGI

Director, Oxford Quantum Institute

Sub department

  • Atomic and Laser Physics
Ian.Walmsley@physics.ox.ac.uk
Telephone: 01865 772209
  • About
  • Publications

Generation of two-photon States with an arbitrary degree of entanglement via nonlinear crystal superlattices.

Phys Rev Lett 97:22 (2006) 223602

Authors:

Alfred B U'Ren, Reinhard K Erdmann, Manuel de la Cruz-Gutierrez, Ian A Walmsley

Abstract:

We demonstrate a general method of engineering the joint quantum state of photon pairs produced in spontaneous parametric down-conversion. The method makes use of a superlattice structure of nonlinear and linear materials, in conjunction with a broadband pump, to manipulate the group delays of the signal and idler photons relative to the pump pulse, and realizes photon pairs described by a joint spectral amplitude with arbitrary degree of entanglement. This method of group-delay engineering has the potential of synthesizing a broad range of states including factorizable states crucial for quantum networking and states optimized for Hong-Ou-Mandel interferometry. Experimental results for the latter case are presented, illustrating the principles of this approach.
More details from the publisher
More details

Entanglement fidelity of quantum memories

Physical Review A - Atomic, Molecular, and Optical Physics 74:5 (2006)

Authors:

K Surmacz, J Nunn, FC Waldermann, Z Wang, IA Walmsley, D Jaksch

Abstract:

We introduce a figure of merit for a quantum memory which measures the preservation of entanglement between a qubit stored in and retrieved from the memory and an auxiliary qubit. We consider a general quantum memory system consisting of a medium of two level absorbers, with the qubit to be stored encoded in a single photon. We derive an analytic expression for our figure of merit taking into account Gaussian fluctuations in the Hamiltonian parameters, which, for example, model inhomogeneous broadening and storage time dephasing. Finally we specialize to the case of an atomic quantum memory where fluctuations arise predominantly from Doppler broadening and motional dephasing. © 2006 The American Physical Society.
More details from the publisher
More details

Experimental realization of maximum confidence quantum state discrimination for the extraction of quantum information.

Phys Rev Lett 97:19 (2006) 193601

Authors:

Peter J Mosley, Sarah Croke, Ian A Walmsley, Stephen M Barnett

Abstract:

We present the first experimental demonstration of the maximum confidence measurement strategy for quantum state discrimination. Applying this strategy to an arbitrary set of states assigns to each input state a measurement outcome which, when realized, gives the highest possible confidence that the state was indeed present. The theoretically optimal measurement for discriminating between three equiprobable symmetric qubit states is implemented in a polarization-based free-space interferometer. The maximum confidence in the measurement result is 2/3. This is the first explicit demonstration that an improvement in the confidence over the optimal minimum error measurement is possible for linearly dependent states.
More details from the publisher
More details

Direct, loss-tolerant characterization of nonclassical photon statistics.

Phys Rev Lett 97:4 (2006) 043602

Authors:

Daryl Achilles, Christine Silberhorn, Ian A Walmsley

Abstract:

We experimentally investigate a method of directly characterizing the photon-number distribution of nonclassical light beams that is tolerant to losses and makes use of only standard binary detectors. This is achieved in a single measurement by calibrating the detector using some small amount of prior information about the source. We demonstrate the technique on a freely propagating heralded two-photon-number state created by conditional detection of a two-mode squeezed state generated by parametric down-conversion.
More details from the publisher
More details

Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction.

Opt Lett 31:12 (2006) 1914-1916

Authors:

Adam S Wyatt, Ian A Walmsley, Gero Stibenz, Günter Steinmeyer

Abstract:

We demonstrate an extremely accurate method for measuring ultrabroadband, sub-10 fs pulses even if they exhibit a highly modulated spectrum, space-time coupling, or both. The method uses a spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction, which allows a zero additional phase measurement to be performed with a relatively low signal-to-noise ratio in real time and single shot.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Current page 44
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet