Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Ian Walmsley

Visiting Professor

Sub department

  • Atomic and Laser Physics
Ian.Walmsley@physics.ox.ac.uk
  • About
  • Publications

Fiber-assisted detection with photon number resolution.

Opt Lett 28:23 (2003) 2387-2389

Authors:

Daryl Achilles, Christine Silberhorn, Cezary Sliwa, Konrad Banaszek, Ian A Walmsley

Abstract:

We report the development of a photon-number-resolving detector based on a fiber-optical setup and a pair of standard avalanche photodiodes. The detector is capable of resolving individual photon numbers and operates on the well-known principle by which a single-mode input state is split into a large number (eight) of output modes. We reconstruct the photon statistics of weak coherent input light from experimental data and show that there is a high probability of inferring the input photon number from a measurement of the number of detection events on a single run.
More details from the publisher
More details

Photon engineering for quantum information processing

QUANTUM INFORM COMPU 3 (2003) 480-502

Authors:

AB U'Ren, K Banaszek, IA Walmsley

Abstract:

We study distinguishing information in the context of quantum interference involving more than one parametric downconversion (PDC) source and in the context of generating polarization-entangled photon pairs based on PDC. We arrive at specific design criteria for two-photon sources so that when used as part of complex optical systems, such as photon-based quantum information processing schemes, distinguishing information between the photons is eliminated guaranteeing high visibility interference. We propose practical techniques which lead to suitably engineered two-photon states that can be realistically implemented with available technology. Finally, we study an implementation of the nonlinear-sign shift (NS) logic gate with PDC sources and show the effect of distinguishing information on the performance of the gate.
More details

Direct measurement of the spatial Wigner function with area-integrated detection.

Opt Lett 28:15 (2003) 1317-1319

Authors:

Eran Mukamel, Konrad Banaszek, Ian A Walmsley, Christophe Dorrer

Abstract:

We demonstrate experimentally a novel technique for characterizing transverse spatial coherence by using the Wigner distribution function. The method is based on the measurement of interference between a pair of rotated and displaced replicas of the input beam with an area-integrating detector, and it provides an optimal signal-to-noise ratio in regimes when array detectors are not available. We analyze the quantum-optical picture of the presented measurement for single-photon signals and discuss possible applications in quantum information processing.
More details from the publisher
More details
Details from ArXiV

Managing photons for quantum information processing

PHILOS T ROY SOC A 361:1808 (2003) 1493-1506

Authors:

AB U'Ren, E Mukamel, K Banaszek, IA Walmsley

Abstract:

We study distinguishing information in the context of photonic quantum interference tailored for practical implementations of quantum information processing schemes. In particular, we consider the character of single-photon states optimized for multiple-source interference experiments and for experiments relying on Bell-state measurement and arrive at specific design criteria for photons produced by parametric down-conversion. Such states can be realistically implemented with available technology. We describe a novel method for characterizing the mode structure of single photons, and demonstrate it in the context of coherent light.
More details from the publisher
More details
More details

Photon counting with a loop detector.

Opt Lett 28:1 (2003) 52-54

Authors:

Konrad Banaszek, Ian A Walmsley

Abstract:

We propose a design for a photon-counting detector that is capable of resolving multiphoton events. The basic element of the setup is a fiber loop, which traps the input field with the help of a fast electro-optic switch. A single weakly coupled avalanche photodiode is used to detect small portions of the signal field extracted from the loop. We analyze the response of the loop detector to an arbitrary input field and discuss both the reconstruction of the photon-number distribution of an unknown field from the count statistics measured in the setup and the application of the detector in conditional-state preparation.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • Current page 51
  • Page 52
  • Page 53
  • Page 54
  • Page 55
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet