Coherent control of phonons probed by time-resolved x-ray diffraction
OPTICS LETTERS 27:10 (2002) 869-871
Measurements of the XUV transmission of aluminium with a soft x-ray laser
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 35:20 (2002) PII S0953-4075(02)53020-0
Picosecond X-ray diffraction studies of laser-excited acoustic phonons in InSb
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 75:4 (2002) 467-478
Detailed hydrodynamic and X-ray spectroscopic analysis of a laser-produced rapidly-expanding aluminium plasma
Journal of Quantitative Spectroscopy and Radiative Transfer 71:2-6 (2001) 237-247
Abstract:
We present a detailed analysis of K-shell emission from laser-produced rapidly-expanding Al plasmas. This work forms part of a series of experiments performed at the Vulcan laser facility of the Rutherford Appleton Laboratory, UK. 1-D planar expansion was obtained by over-illuminating A1-microdot targets supported on CH plastic foils. The small size of the A1-plasma ensured high spatial and frequency resolution of the spectra, obtained with a single crystal spectrometer, two vertical dispersion variant double crystal spectrometers, and a vertical dispersion variant Johann Spectrometer. The hydrodynamic properties of the plasma were measured independently by spatially and temporally resolved Thomson scattering, utilizing a 4ω probe beam. This enabled sub- and super-critical densities to be probed relative to the 1ω heater beams. The deduced plasma hydrodynamic conditions are compared with those generated from the 1-D hydro-code Medusa, and the significant differences found in the electron temperature discussed. Synthetic spectra generated from the detailed term collisional radiative non-LTE atomic physics code Fly are compared with the experimental spectra for the measured hydrodynamic parameters, and for those taken from Medusa. Excellent agreement is only found for both the H- and He-like A1 series when careful account is taken of the temporal evolution of the electron temperature. © 2001 Published by Elsevier Science Ltd.Extension of the code suite FLY to a multi-cell postproces sor for hydrodynamic plasma simulation codes
Journal of Quantitative Spectroscopy and Radiative Transfer 71:2-6 (2001) 721-728