Measurement of the muon neutrino charged-current single $π^+$ production on hydrocarbon using the T2K off-axis near detector ND280
Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society (2020)
Abstract:
We report the measurements of single and double differential cross section of muon neutrino charged-current interactions on carbon with a single positively charged pion in the final state at the T2K off-axis near detector using $5.56\times10^{20}$ protons on target. The analysis uses data control samples for the background subtraction and the cross section signal, defined as a single negatively charged muon and a single positively charged pion exiting from the target nucleus, is extracted using an unfolding method. The model dependent cross section, integrated over the T2K off-axis neutrino beam spectrum peaking at $0.6$~GeV, is measured to be $\sigma = (11.76 \pm 0.44 \text{(stat)} \pm 2.39 \text{(syst)}) \times 10^{-40} \text{cm}^2$~$\text{nucleon}^{-1}$. Various differential cross sections are measured, including the first measurement of the Adler angles for single charged pion production in neutrino interactions with heavy nuclei target.Measurement of neutrino and antineutrino neutral-current quasielastic-like interactions on oxygen by detecting nuclear de-excitation $γ$-rays
Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society (2019)
Abstract:
Neutrino- and antineutrino-oxygen neutral-current quasielastic-like interactions are measured at Super-Kamiokande using nuclear de-excitation $\gamma$-rays to identify signal-like interactions in data from a $14.94 \ (16.35)\times 10^{20}$ protons-on-target exposure of the T2K neutrino (antineutrino) beam. The measured flux-averaged cross sections on oxygen nuclei are $\langle \sigma_{\nu {\rm -NCQE}} \rangle = 1.70 \pm 0.17 ({\rm stat.}) ^{+ {\rm 0.51}}_{- {\rm 0.38}} ({\rm syst.}) \times 10^{-38} \ {\rm cm^2/oxygen}$ with a flux-averaged energy of 0.82 GeV and $\langle \sigma_{\bar{\nu} {\rm -NCQE}} \rangle = 0.98 \pm 0.16 ({\rm stat.}) ^{+ {\rm 0.26}}_{- {\rm 0.19}} ({\rm syst.}) \times 10^{-38} \ {\rm cm^2/oxygen}$ with a flux-averaged energy of 0.68 GeV, for neutrinos and antineutrinos, respectively. These results are the most precise to date, and the antineutrino result is the first cross section measurement of this channel. They are compared with various theoretical predictions. The impact on evaluation of backgrounds to searches for supernova relic neutrinos at present and future water Cherenkov detectors is also discussed.Commissioning and Operation of the Readout System for the SoLid Neutrino Detector
Journal of Instrumentation IOP Publishing (2019)
Abstract:
The SoLid experiment aims to measure neutrino oscillation at a baseline of 6.4 m from the BR2 nuclear reactor in Belgium. Anti-neutrinos interact via inverse beta decay (IBD), resulting in a positron and neutron signal that are correlated in time and space. The detector operates in a surface building, with modest shielding, and relies on extremely efficient online rejection of backgrounds in order to identify these interactions. A novel detector design has been developed using 12800 5 cm cubes for high segmentation. Each cube is formed of a sandwich of two scintillators, PVT and 6LiF:ZnS(Ag), allowing the detection and identification of positrons and neutrons respectively. The active volume of the detector is an array of cubes measuring 80x80x250 cm (corresponding to a fiducial mass of 1.6 T), which is read out in layers using two dimensional arrays of wavelength shifting fibres and silicon photomultipliers, for a total of 3200 readout channels. Signals are recorded with 14 bit resolution, and at 40 MHz sampling frequency, for a total raw data rate of over 2 Tbit/s. In this paper, we describe a novel readout and trigger system built for the experiment, that satisfies requirements on: compactness, low power, high performance, and very low cost per channel. The system uses a combination of high price-performance FPGAs with a gigabit Ethernet based readout system, and its total power consumption is under 1 kW. The use of zero suppression techniques, combined with pulse shape discrimination trigger algorithms to detect neutrons, results in an online data reduction factor of around 10000. The neutron trigger is combined with a large per-channel history time buffer, allowing for unbiased positron detection. The system was commissioned in late 2017, with successful physics data taking established in early 2018.Nuclear binding energy and transverse momentum imbalance in neutrino-nucleus reaction
Arxiv (2019)
Abstract:
Observables based on the final state kinematic imbalances are measured in the mesonless production of $\nu_\mu+A\rightarrow\mu^-+p+X$ in the MINERvA tracker. Components of the muon-proton momentum imbalances parallel ($\delta p_{Ty}$) and perpendicular($\delta p_{Tx}$) to the momentum transfer in the transverse plane are found to be sensitive to the nuclear effects such as Fermi motion, binding energy and non-QE contributions. The QE peak location in $\delta p_{Ty}$ is particularly sensitive to the binding energy. Differential cross sections are compared to predictions from different neutrino interaction models. None of the Fermi gas models simultaneously describe every feature of the QE peak width, location, and non-QE contribution to the signal process. Correcting the GENIE's binding energy implementation according to theory causes better agreement with data. Hints of proton left-right asymmetry is observed in $\delta p_{Tx}$. Better modelling of the binding energy can reduce bias in neutrino energy reconstruction and these observables can be applied in current and future experiments to better constrain nuclear effects.Constraint on the Matter-Antimatter Symmetry-Violating Phase in Neutrino Oscillations
ArXiv 1910.03887 (2019)