Search for neutral-current induced single photon production at the ND280 near detector in T2K
Journal of Physics G: Nuclear and Particle Physics IOP Publishing 46:8 (2019) 08LT01
Abstract:
All rights reserved. Neutrino neutral-current (NC) induced single photon production is a subleading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the finegrained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron positron pairs, we achieved 95% pure gamma ray sample from 5.738 1020 protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at 0.114 10-38 cm2 (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of .En. ~ 0.6 GeV. This is the first limit on this process below 1.GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals.Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km
Phys. Rev. D99 (2019) 7
Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit
Physical Review Letters American Physical Society 122:9 (2019) 091803
Abstract:
A search for mixing between active neutrinos and light sterile neutrinos has been performed by looking for muon neutrino disappearance in two detectors at baselines of 1.04 and 735 km, using a combined MINOS and MINOS+ exposure of 16.36 × 1020 protons on target. A simultaneous fit to the chargedcurrent muon neutrino and neutral-current neutrino energy spectra in the two detectors yields no evidence for sterile neutrino mixing using a 3 þ 1 model. The most stringent limit to date is set on the mixing parameter sin2 θ24 for most values of the sterile neutrino mass splitting Δm2 41 > 10−4 eV2.Development of a Quality Assurance Process for the SoLid Experiment
Journal of Instrumentation IOP Publishing (2019)
Abstract:
The SoLid experiment has been designed to search for an oscillation pattern induced by a light sterile neutrino state, utilising the BR2 reactor of SCK$\bullet$CEN, in Belgium. The detector leverages a new hybrid technology, utilising two distinct scintillators in a cubic array, creating a highly segmented detector volume. A combination of 5 cm cubic polyvinyltoluene cells, with $^6$LiF:ZnS(Ag) sheets on two faces of each cube, facilitate reconstruction of the neutrino signals. % The polyvinyltoluene scintillator is used as an $\overline{\nu}_e$ target for the inverse beta decay of ($\overline{\nu}_e + p \rightarrow e^{+}+n$), with the $^6$LiF:ZnS(Ag) sheets used for associated neutron detection. Scintillation signals are read out by a network of wavelength shifting fibres connected to multipixel photon counters. Whilst the high granularity provides a powerful toolset to discriminate backgrounds; by itself the segmentation also represents a challenge in terms of homogeneity and calibration, for a consistent detector response. The search for this light sterile neutrino implies a sensitivity to distortions of around $\mathcal{O}$(10)\% in the energy spectrum of reactor $\overline{\nu}_e$. Hence, a very good neutron detection efficiency, light yield and homogeneous detector response are critical for data validation. The minimal requirements for the SoLid physics program are a light yield and a neutron detection efficiency larger than 40 PA/MeV/cube and 50 \% respectively. In order to guarantee these minimal requirements, the collaboration developed a rigorous quality assurance process for all 12800 cubic cells of the detector. To carry out the quality assurance process, an automated calibration system called CALIPSO was designed and constructed.Research and development for near detector systems towards long term evolution of ultra-precise long-baseline neutrino experiments
(2019)