Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Tim Woollings

Professor of Physical Climate Science

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Tim.Woollings@physics.ox.ac.uk
Telephone: 01865 (2)82427
Atmospheric Physics Clarendon Laboratory, room 203
  • About
  • Publications

Arctic warming, atmospheric blocking and cold European winters in CMIP5 models

Environmental Research Letters 9:1 (2014)

Authors:

T Woollings, B Harvey, G Masato

Abstract:

Amplified Arctic warming is expected to have a significant long-term influence on the midlatitude atmospheric circulation by the latter half of the 21st century. Potential influences of recent and near future Arctic changes on shorter timescales are much less clear, despite having received much recent attention in the literature. In this letter, climate models from the recent CMIP5 experiment are analysed for evidence of an influence of Arctic temperatures on midlatitude blocking and cold European winters in particular. The focus is on the variability of these features in detrended data and, in contrast to other studies, limited evidence of an influence is found. The occurrence of cold European winters is found to be largely independent of the temperature variability in the key Barents-Kara Sea region. Positive correlations of the Barents-Kara temperatures with Eurasian blocking are found in some models, but significant correlations are limited. © 2014 IOP Publishing Ltd.
More details from the publisher

Arctic warming, atmospheric blocking and cold European winters in CMIP5 models

Environmental Research Letters 9:1 (2014)

Authors:

TJ Woollings, BJ Harvey, G Masato

Abstract:

Amplified Arctic warming is expected to have a significant long-term influence on the midlatitude atmospheric circulation by the latter half of the 21st century. Potential influences of recent and near future Arctic changes on shorter timescales are much less clear, despite having received much recent attention in the literature. In this letter, climate models from the recent CMIP5 experiment are analysed for evidence of an influence of Arctic temperatures on midlatitude blocking and cold European winters in particular. The focus is on the variability of these features in detrended data and, in contrast to other studies, limited evidence of an influence is found. The occurrence of cold European winters is found to be largely independent of the temperature variability in the key Barents-Kara Sea region. Positive correlations of the Barents-Kara temperatures with Eurasian blocking are found in some models, but significant correlations are limited. © 2014 IOP Publishing Ltd.
More details from the publisher
Details from ORA
More details

Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models

Climate Dynamics 43:5-6 (2014) 1171-1182

Authors:

BJ Harvey, LC Shaffrey, TJ Woollings

Abstract:

This paper aims to understand the physical processes causing the large spread in the storm track projections of the CMIP5 climate models. In particular, the relationship between the climate change responses of the storm tracks, as measured by the 2-6 day mean sea level pressure variance, and the equator-to-pole temperature differences at upper- and lower-tropospheric levels is investigated. In the southern hemisphere the responses of the upper- and lower-tropospheric temperature differences are correlated across the models and as a result they share similar associations with the storm track responses. There are large regions in which the storm track responses are correlated with the temperature difference responses, and a simple linear regression model based on the temperature differences at either level captures the spatial pattern of the mean storm track response as well explaining between 30 and 60 % of the inter-model variance of the storm track responses. In the northern hemisphere the responses of the two temperature differences are not significantly correlated and their associations with the storm track responses are more complicated. In summer, the responses of the lower-tropospheric temperature differences dominate the inter-model spread of the storm track responses. In winter, the responses of the upper- and lower-temperature differences both play a role. The results suggest that there is potential to reduce the spread in storm track responses by constraining the relative magnitudes of the warming in the tropical and polar regions. © 2013 Springer-Verlag Berlin Heidelberg.
More details from the publisher

Rossby wave-breaking analysis of explosive cyclones in the Euro-Atlantic sector

Quarterly Journal of the Royal Meteorological Society 140:680 (2014) 738-753

Authors:

I Gómara, JG Pinto, T Woollings, G Masato, P Zurita-Gotor, B Rodríguez-Fonseca

Abstract:

The two-way relationship between Rossby wave-breaking (RWB) and intensification of extratropical cyclones is analysed over the Euro-Atlantic sector. In particular, the timing, intensity and location of cyclone development are related to RWB occurrences. For this purpose, two indices based on potential temperature are used to detect and classify anticyclonic and cyclonic RWB episodes from ERA-40 reanalysis data. Results show that explosive cyclogenesis over the North Atlantic (NA) is fostered by enhanced occurrence of RWB on days prior to the cyclone's maximum intensification. Under such conditions, the eddy-driven jet stream is accelerated over the NA, thus enhancing conditions for cyclogenesis. For explosive cyclogenesis over the eastern NA, enhanced cyclonic RWB over eastern Greenland and anticyclonic RWB over the subtropical NA are observed. Typically only one of these is present in any given case, with the RWB over eastern Greenland being more frequent than its southern counterpart. This leads to an intensification of the jet over the eastern NA and enhanced probability of windstorms reaching western Europe. Explosive cyclones evolving under simultaneous RWB on both sides of the jet feature a higher mean intensity and deepening rates than cyclones preceded by a single RWB event. Explosive developments over the western NA are typically linked to a single area of enhanced cyclonic RWB over western Greenland. Here, the eddy-driven jet is accelerated over the western NA. Enhanced occurrence of cyclonic RWB over southern Greenland and anticyclonic RWB over Europe is also observed after explosive cyclogenesis, potentially leading to the onset of Scandinavian blocking. However, only very intense developments have a considerable influence on the large-scale atmospheric flow. Non-explosive cyclones depict no sign of enhanced RWB over the whole NA area. We conclude that the links between RWB and cyclogenesis over the Euro-Atlantic sector are sensitive to the cyclone's maximum intensity, deepening rate and location. © 2013 Royal Meteorological Society.
More details from the publisher

Twentieth century North Atlantic jet variability

Quarterly Journal of the Royal Meteorological Society 140:680 (2014) 783-791

Authors:

T Woollings, C Czuchnicki, C Franzke

Abstract:

Long records of the latitude and speed of the North Atlantic eddy-driven jet stream since 1871 are presented from the newly available Twentieth Century Reanalysis. These jet variations underlie the variability associated with patterns such as the North Atlantic Oscillation (NAO) and have considerable societal impact through variations in the prevailing westerly winds. While the NAO combines variations in the latitude and speed of the jet, these two characteristics are shown to have quite different seasonal cycles and interannual variability, suggesting that they may have different dynamical influences. In general, the features exhibited in shorter records are shown to be robust, for example the strong skewness of the NAO distribution. Related to this is a clear multimodality of the jet latitude distribution, which suggests the existence of preferred positions of the jet. Decadal variations in jet latitude are shown to correspond to changes in the occurrence of these preferred positions. However, it is the speed rather than the latitude of the jet that exhibits the strongest decadal variability, and in most seasons this is clearly distinct from a white-noise representation of the seasonal means. When viewed in this longer term context, the variations of recent decades do not appear unusual and recent values of jet latitude and speed are not unprecedented in the historical record. © 2013 Royal Meteorological Society.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet