Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Red blue phase platelets

Banner image: red 'blue phase' platelets I observed under crossed polarisers during an undergraduate summer research project in Cambridge. My first taste of academic research!

Dr Adam Wright

Long Term Visitor

Sub department

  • Condensed Matter Physics
adam.wright@physics.ox.ac.uk
Google Scholar
ORCiD
Publons/ResearcherID
  • About
  • Publications

Intrinsic quantum confinement in formamidiniumlead triiodide perovskite

Nature Materials Nature Research 19 (2020) 1201-1206

Authors:

Adam D Wright, George Volonakis, Juliane Borchert, Michael Johnston, Laura Herz

Abstract:

Understanding the electronic energy landscape in metal halide perovskites is essential for further improvements in their promising performance in thin-film photovoltaics. Here, we uncover the presence of above-bandgap oscillatory features in the absorption spectra of formamidinium lead triiodide thin films. We attribute these discrete features to intrinsically occurring quantum confinement effects, for which the related energies change with temperature according to the inverse square of the intrinsic lattice parameter, and with peak index in a quadratic manner. By determining the threshold film thickness at which the amplitude of the peaks is appreciably decreased, and through ab initio simulations of the absorption features, we estimate the length scale of confinement to be 10–20 nm. Such absorption peaks present a new and intriguing quantum electronic phenomenon in a nominally bulk semiconductor, offering intrinsic nanoscale optoelectronic properties without necessitating cumbersome additional processing steps.
More details from the publisher
Details from ORA
More details
More details

Ultrafast excited-state localization in Cs2AgBiBr6 double perovskite

Journal of Physical Chemistry Letters American Chemical Society 12:13 (2021) 3352-3360

Authors:

Adam Wright, Leonardo RV Buizza, Kimberley Savill, Giulia Longo, Henry Snaith, Michael Johnston, Laura Herz

Abstract:

Cs2AgBiBr6 is a promising metal halide double perovskite offering the possibility of efficient photovoltaic devices based on lead-free materials. Here, we report on the evolution of photoexcited charge carriers in Cs2AgBiBr6 using a combination of temperature-dependent photoluminescence, absorption and optical pump–terahertz probe spectroscopy. We observe rapid decays in terahertz photoconductivity transients that reveal an ultrafast, barrier-free localization of free carriers on the time scale of 1.0 ps to an intrinsic small polaronic state. While the initially photogenerated delocalized charge carriers show bandlike transport, the self-trapped, small polaronic state exhibits temperature-activated mobilities, allowing the mobilities of both to still exceed 1 cm2 V–1 s–1 at room temperature. Self-trapped charge carriers subsequently diffuse to color centers, causing broad emission that is strongly red-shifted from a direct band edge whose band gap and associated exciton binding energy shrink with increasing temperature in a correlated manner. Overall, our observations suggest that strong electron–phonon coupling in this material induces rapid charge-carrier localization.
More details from the publisher
Details from ORA
More details
More details

Band-tail recombination in hybrid lead iodide perovskite

Advanced Functional Materials Wiley (2017)

Authors:

AD Wright, Rebecca L Milot, GE Eperon, Henry J Snaith, Laura Johnston, Michael B Herz

Abstract:

Traps limit the photovoltaic efficiency and affect the charge transport of optoelectronic devices based on hybrid lead halide perovskites. Understanding the nature and energy scale of these trap states is therefore crucial for the development and optimization of solar cell and laser technology based on these materials. Here, the low-temperature photoluminescence of formamidinium lead triiodide (HC(NH2)2PbI3) is investigated. A power-law time dependence in the emission intensity and an additional low-energy emission peak that exhibits an anomalous relative Stokes shift are observed. Using a rate-equation model and a Monte Carlo simulation, it is revealed that both phenomena arise from an exponential trap-density tail with characteristic energy scale of ≈3 meV. Charge-carrier recombination from sites deep within the tail is found to cause emission with energy downshifted by up to several tens of meV. Hence, such phenomena may in part be responsible for open-circuit voltage losses commonly observed in these materials. In this high-quality hybrid perovskite, trap states thus predominantly comprise a continuum of energetic levels (associated with disorder) rather than discrete trap energy levels (associated, e.g., with elemental vacancies). Hybrid perovskites may therefore be viewed as classic semiconductors whose bandstructure picture is moderated by a modest degree of energetic disorder.
More details from the publisher
Details from ORA
More details
More details

Electron–phonon coupling in hybrid lead halide perovskites

Nature Communications Nature Publishing Group: Nature Communications 7 (2016)

Authors:

Adam DM Wright, Laura M Herz, Rebecca L Milot, Carla Verdi, Michael B Johnston, Giles E Eperon, Henry J Snaith, Feliciano Giustino, Miguel A Perez-Osorio

Abstract:

Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3,CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fro¨hlich coupling constants ofB40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.
More details from the publisher
Details from ORA
More details
More details

A versatile platform for gas-phase molecular polaritonics.

The Journal of chemical physics 159:16 (2023) 164202

Authors:

Adam D Wright, Jane C Nelson, Marissa L Weichman

Abstract:

Cavity coupling of gas-phase molecules will enable studies of benchmark chemical processes under strong light-matter interactions with a high level of experimental control and no solvent effects. We recently demonstrated the formation of gas-phase molecular polaritons by strongly coupling bright ν3, J = 3 → 4 rovibrational transitions of methane (CH4) to a Fabry-Pérot optical cavity mode inside a cryogenic buffer gas cell. Here, we further explore the flexible capabilities of this infrastructure. We show that we can greatly increase the collective coupling strength of the molecular ensemble to the cavity by increasing the intracavity CH4 number density. In doing so, we can tune from the single-mode coupling regime to a multimode coupling regime in which many nested polaritonic states arise as the Rabi splitting approaches the cavity mode spacing. We explore polariton formation for cavity geometries of varying length, finesse, and mirror radius of curvature. We also report a proof-of-principle demonstration of rovibrational gas-phase polariton formation at room temperature. This experimental flexibility affords a great degree of control over the properties of molecular polaritons and opens up a wider range of simple molecular processes to future interrogation under strong cavity-coupling. We anticipate that ongoing work in gas-phase polaritonics will facilitate convergence between experimental results and theoretical models of cavity-altered chemistry and physics.
More details from the publisher
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet