Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite
ACS Energy Letters American Chemical Society (ACS) (2018) 299-305
Electronic Traps and Phase Segregation in Lead Mixed-Halide Perovskite
ACS Energy Letters (2018) 75-84
Abstract:
© 2018 American Chemical Society. An understanding of the factors driving halide segregation in lead mixed-halide perovskites is required for their implementation in tandem solar cells with existing silicon technology. Here we report that the halide segregation dynamics observed in the photoluminescence from CH3NH3Pb(Br0.5I0.5)3 is strongly influenced by the atmospheric environment, and that encapsulation of films with a layer of poly(methyl methacrylate) allows for halide segregation dynamics to be fully reversible and repeatable. We further establish an empirical model directly linking the amount of halide segregation observed in the photoluminescence to the fraction of charge carriers recombining through trap-mediated channels, and the photon flux absorbed. From such quantitative analysis we show that under pulsed illumination, the frequency of the modulation alone has no influence on the segregation dynamics. Additionally, we extrapolate that working CH3NH3Pb(Br0.5I0.5)3 perovskite cells would require a reduction of the trap-related charge carrier recombination rate to ≲105s-1 in order for halide segregation to be sufficiently suppressed.Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process.
Nature communications 9:1 (2018) 293-293
Abstract:
Photovoltaic devices based on metal halide perovskites are rapidly improving in efficiency. Once the Shockley-Queisser limit is reached, charge-carrier extraction will be limited only by radiative bimolecular recombination of electrons with holes. Yet, this fundamental process, and its link with material stoichiometry, is still poorly understood. Here we show that bimolecular charge-carrier recombination in methylammonium lead triiodide perovskite can be fully explained as the inverse process of absorption. By correctly accounting for contributions to the absorption from excitons and electron-hole continuum states, we are able to utilise the van Roosbroeck-Shockley relation to determine bimolecular recombination rate constants from absorption spectra. We show that the sharpening of photon, electron and hole distribution functions significantly enhances bimolecular charge recombination as the temperature is lowered, mirroring trends in transient spectroscopy. Our findings provide vital understanding of band-to-band recombination processes in this hybrid perovskite, which comprise direct, fully radiative transitions between thermalized electrons and holes.Large-area, highly uniform evaporated formamidinium lead triiodide thin-films for solar cells
ACS Energy Letters American Chemical Society 2 (2017) 2799-2804
Abstract:
Perovskite thin-film solar cells are one of the most promising emerging renewable energy technologies because of their potential for low-cost, large-area fabrication combined with high energy conversion efficiencies. Recently, formamidinium lead triiodide (FAPbI3) and other formamidinium (CH(NH2)2) based perovskites have been explored as interesting alternatives to methylammonium lead triiodide (MAPbI3) because they exhibit better thermal stability. However, at present a major challenge is the scale-up of perovskite solar cells from small test-cells to full solar modules. We show that coevaporation is a scalable method for the deposition of homogeneous FAPbI3 thin films over large areas. The method allows precise control over film thickness and results in highly uniform, pinhole-free layers. Our films exhibited a high charge-carrier mobility of 26 cm2 V–1s–1, excellent optical properties, and a bimolecular recombination constant of 7 × 10–11 cm3 s–1. Solar cells fabricated using these vapor-deposited layers within a regular device architecture produced stabilized power conversion efficiencies of up to 14.2%. Thus, we demonstrate that efficient FAPbI3 solar cells can be vapor-deposited, which opens up a pathway toward large-area stable perovskite photovoltaics.F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft
Scientific Reports 6:1 (2016)