Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Red blue phase platelets

Banner image: red 'blue phase' platelets I observed under crossed polarisers during an undergraduate summer research project in Cambridge. My first taste of academic research!

Dr Adam Wright

Long Term Visitor

Sub department

  • Condensed Matter Physics
adam.wright@physics.ox.ac.uk
Google Scholar
ORCiD
Publons/ResearcherID
  • About
  • Publications

Limits to Electrical Mobility in Lead-Halide Perovskite Semiconductors

(2021)

Authors:

Chelsea Q Xia, Jiali Peng, Samuel Poncé, Jay B Patel, Adam D Wright, Timothy W Crothers, Mathias Uller Rothmann, Juliane Borchert, Rebecca L Milot, Hans Kraus, Qianqian Lin, Feliciano Giustino, Laura M Herz, Michael B Johnston
More details from the publisher
Details from ArXiV

Charge-carrier mobility and localization in semiconducting CU2AGBiI6 for photovoltaic applications

ACS Energy Letters American Chemical Society 6:5 (2021) 1729-1739

Authors:

Leonardo RV Buizza, Adam D Wright, Giulia Longo, Harry C Sansom, Chelsea Q Xia, Matthew J Rosseinsky, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

Lead-free silver–bismuth semiconductors have become increasingly popular materials for optoelectronic applications, building upon the success of lead halide perovskites. In these materials, charge-lattice couplings fundamentally determine charge transport, critically affecting device performance. In this study, we investigate the optoelectronic properties of the recently discovered lead-free semiconductor Cu2AgBiI6 using temperature-dependent photoluminescence, absorption, and optical-pump terahertz-probe spectroscopy. We report ultrafast charge-carrier localization effects, evident from sharp THz photoconductivity decays occurring within a few picoseconds after excitation and a rise in intensity with decreasing temperature of long-lived, highly Stokes-shifted photoluminescence. We conclude that charge carriers in Cu2AgBiI6 are subject to strong charge-lattice coupling. However, such small polarons still exhibit mobilities in excess of 1 cm2 V–1 s–1 at room temperature because of low energetic barriers to formation and transport. Together with a low exciton binding energy of ∼29 meV and a direct band gap near 2.1 eV, these findings highlight Cu2AgBiI6 as an attractive lead-free material for photovoltaic applications.
More details from the publisher
Details from ORA
More details
More details

Limits to electrical mobility in lead-halide perovskite semiconductors

Journal of Physical Chemistry Letters American Chemical Society 12:14 (2021) 3607-3617

Authors:

Chelsea Xia, Jiali Peng, Samuel Poncé, Jay Patel, Adam Wright, Timothy W Crothers, Mathias Rothmann, Anna Juliane Borchert, Rebecca L Milot, Hans Kraus, Qianqian Lin, Feliciano Giustino, Laura Herz, Michael Johnston

Abstract:

Semiconducting polycrystalline thin films are cheap to produce and can be deposited on flexible substrates, yet high-performance electronic devices usually utilize single-crystal semiconductors, owing to their superior charge-carrier mobilities and longer diffusion lengths. Here we show that the electrical performance of polycrystalline films of metal-halide perovskites (MHPs) approaches that of single crystals at room temperature. Combining temperature-dependent terahertz conductivity measurements and ab initio calculations we uncover a complete picture of the origins of charge-carrier scattering in single crystals and polycrystalline films of CH3NH3PbI3. We show that Fröhlich scattering of charge carriers with multiple phonon modes is the dominant mechanism limiting mobility, with grain-boundary scattering further reducing mobility in polycrystalline films. We reconcile the large discrepancy in charge-carrier diffusion lengths between single crystals and films by considering photon reabsorption. Thus, polycrystalline films of MHPs offer great promise for devices beyond solar cells, including light-emitting diodes and modulators.
More details from the publisher
Details from ORA
More details
More details

Highly absorbing lead-free semiconductor Cu2AgBiI6 for photovoltaic applications from the quaternary CuI-AgI-BiI3 phase space

Journal of the American Chemical Society American Chemical Society 143:10 (2021) 3983-3992

Authors:

Harry C Sansom, Giulia Longo, Adam D Wright, Leonardo RV Buizza, Suhas Mahesh, Bernard Wenger, Marco Zanella, Mojtaba Abdi-Jalebi, Michael J Pitcher, Matthew S Dyer, Troy D Manning, Richard H Friend, Laura M Herz, Henry J Snaith, John B Claridge, Matthew J Rosseinsky

Abstract:

Since the emergence of lead halide perovskites for photovoltaic research, there has been mounting effort in the search for alternative compounds with improved or complementary physical, chemical, or optoelectronic properties. Here, we report the discovery of Cu2AgBiI6: a stable, inorganic, lead-free wide-band-gap semiconductor, well suited for use in lead-free tandem photovoltaics. We measure a very high absorption coefficient of 1.0 × 105 cm–1 near the absorption onset, several times that of CH3NH3PbI3. Solution-processed Cu2AgBiI6 thin films show a direct band gap of 2.06(1) eV, an exciton binding energy of 25 meV, a substantial charge-carrier mobility (1.7 cm2 V–1 s–1), a long photoluminescence lifetime (33 ns), and a relatively small Stokes shift between absorption and emission. Crucially, we solve the structure of the first quaternary compound in the phase space among CuI, AgI and BiI3. The structure includes both tetrahedral and octahedral species which are open to compositional tuning and chemical substitution to further enhance properties. Since the proposed double-perovskite Cs2AgBiI6 thin films have not been synthesized to date, Cu2AgBiI6 is a valuable example of a stable Ag+/Bi3+ octahedral motif in a close-packed iodide sublattice that is accessed via the enhanced chemical diversity of the quaternary phase space.
More details from the publisher
Details from ORA
More details
More details

Charge‐carrier trapping and radiative recombination in metal halide perovskite semiconductors

Advanced Functional Materials Wiley 30:42 (2020) 2004312

Authors:

Michael J Trimpl, Adam D Wright, Kelly Schutt, Leonardo RV Buizza, Zhiping Wang, Michael B Johnston, Henry Snaith, Peter Müller‐Buschbaum, Laura M Herz

Abstract:

Trap‐related charge‐carrier recombination fundamentally limits the performance of perovskite solar cells and other optoelectronic devices. While improved fabrication and passivation techniques have reduced trap densities, the properties of trap states and their impact on the charge‐carrier dynamics in metal‐halide perovskites are still under debate. Here, a unified model is presented of the radiative and nonradiative recombination channels in a mixed formamidinium‐cesium lead iodide perovskite, including charge‐carrier trapping, de‐trapping and accumulation, as well as higher‐order recombination mechanisms. A fast initial photoluminescence (PL) decay component observed after pulsed photogeneration is demonstrated to result from rapid localization of free charge carriers in unoccupied trap states, which may be followed by de‐trapping, or nonradiative recombination with free carriers of opposite charge. Such initial decay components are shown to be highly sensitive to remnant charge carriers that accumulate in traps under pulsed‐laser excitation, with partial trap occupation masking the trap density actually present in the material. Finally, such modelling reveals a change in trap density at the phase transition, and disentangles the radiative and nonradiative charge recombination channels present in FA0.95Cs0.05PbI3, accurately predicting the experimentally recorded PL efficiencies between 50 and 295 K, and demonstrating that bimolecular recombination is a fully radiative process.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet