A programmatic view of metadata, metadata services, and metadata flow in ATLAS

Journal of Physics: Conference Series 396:PART 5 (2012)

Authors:

D Malon, S Albrand, E Gallas, G Stewart

Abstract:

The volume and diversity of metadata in an experiment of the size and scope of ATLAS are considerable. Even the definition of metadata may seem context-dependent: data that are primary for one purpose may be metadata for another. ATLAS metadata services must integrate and federate information from inhomogeneous sources and repositories, map metadata about logical or physics constructs to deployment and production constructs, provide a means to associate metadata at one level of granularity with processing or decision-making at another, offer a coherent and integrated view to physicists, and support both human use and programmatic access. In this paper we consider ATLAS metadata, metadata services, and metadata flow principally from the illustrative perspective of how disparate metadata are made available to executing jobs and, conversely, how metadata generated by such jobs are returned. We describe how metadata are read, how metadata are cached, and how metadata generated by jobs and the tasks of which they are a part are communicated, associated with data products, and preserved. We also discuss the principles that guide decision-making about metadata storage, replication, and access..

ATLAS file and dataset metadata collection and use

Journal of Physics: Conference Series 396:PART 5 (2012)

Authors:

S Albrand, EJ Gallas, J Fulachier, F Lambert

Abstract:

The ATLAS Metadata Interface ("AMI") was designed as a generic cataloguing system, and as such it has found many uses in the experiment including software release management, tracking of reconstructed event sizes and control of dataset nomenclature. The primary use of AMI is to provide a catalogue of datasets (file collections) which is searchable using physics criteria. In this paper we discuss the various mechanisms used for filling the AMI dataset and file catalogues. By correlating information from different sources we can derive aggregate information which is important for physics analysis; for example the total number of events contained in dataset, and possible reasons for missing events such as a lost file. Finally we will describe some specialized interfaces which were developed for the Data Preparation coordinators. These interfaces manipulate information from both the dataset domain held in AMI, and the run-indexed information held in the ATLAS COMA application (Conditions and Configuration MetadatA)..

ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at √s =7 TeV

European Physical Journal C 72:12 (2012)

Authors:

G Aad, T Abajyan, B Abbott, J Abdallah, S Abdel Khalek, AA Abdelalim, O Abdinov, R Aben, B Abi, M Abolins, OS Abouzeid, H Abramowicz, H Abreu, BS Acharya, L Adamczyk, DL Adams, TN Addy, J Adelman, S Adomeit, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Agustoni, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, M Ahsan, G Aielli, T Akdogan, TPA Åkesson, G Akimoto, AV Akimov, MS Alam, MA Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, F Alessandria, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, BMM Allbrooke, PP Allport, SE Allwood-Spiers, J Almond, A Aloisio, R Alon, A Alonso, F Alonso, A Altheimer, B Alvarez Gonzalez, MG Alviggi, K Amako, C Amelung, VV Ammosov, SP Amor Dos Santos, A Amorim, N Amram, C Anastopoulos, LS Ancu, N Andari, T Andeen, CF Anders, G Anders, KJ Anderson, A Andreazza, V Andrei, ML Andrieux, XS Anduaga, P Anger, A Angerami, F Anghinolfi, A Anisenkov, N Anjos, A Annovi, A Antonaki, M Antonelli, A Antonov, J Antos, F Anulli, M Aoki, S Aoun, L Aperio Bella, R Apolle, G Arabidze, I Aracena, Y Arai, ATH Arce, S Arfaoui, JF Arguin, E Arik, M Arik

Abstract:

The ATLAS detector at the LHC is used to search for high-mass states, such as heavy charged gauge bosons (Wʹ), decaying to a charged lepton (electron or muon) and a neutrino. Results are presented based on the analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.7 fb−1. No excess beyond Standard Model expectations is observed. AWʹ with Sequential Standard Model couplings is excluded at the 95% credibility level for masses up to 2.55 TeV. Excited chiral bosons (W*) with equivalent coupling strength are excluded for masses up to 2.42 TeV.

Measurement of the W boson polarization in top quark decays with the ATLAS detector

Journal of High Energy Physics 2012:6 (2012)

Authors:

G Aad, B Abbott, J Abdallah, S Abdel Khalek, AA Abdelalim, O Abdinov, B Abi, M Abolins, OS AbouZeid, H Abramowicz, H Abreu, E Acerbi, BS Acharya, L Adamczyk, DL Adams, TN Addy, J Adelman, S Adomeit, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Agustoni, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, M Ahsan, G Aielli, T Akdogan, TPA Åkesson, G Akimoto, AV Akimov, A Akiyama, MS Alam, MA Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, F Alessandria, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, BMM Allbrooke, PP Allport, SE Allwood-Spiers, J Almond, A Aloisio, R Alon, A Alonso, B Alvarez Gonzalez, MG Alviggi, K Amako, C Amelung, VV Ammosov, A Amorim, N Amram, C Anastopoulos, LS Ancu, N Andari, T Andeen, CF Anders, G Anders, KJ Anderson, A Andreazza, V Andrei, XS Anduaga, P Anger, A Angerami, F Anghinolfi, A Anisenkov, N Anjos, A Annovi, A Antonaki, M Antonelli, A Antonov, J Antos, F Anulli, S Aoun, L Aperio Bella, R Apolle, G Arabidze, I Aracena, Y Arai, ATH Arce, S Arfaoui, JF Arguin, E Arik, M Arik, AJ Armbruster, O Arnaez, V Arnal, C Arnault, A Artamonov

Abstract:

This paper presents measurements of the polarization ofW bosons in top quark decays, derived from tt̄ events with missing transverse momentum, one charged lepton and at least four jets, or two charged leptons and at least two jets. Data from pp collisions at a centre-of-mass energy of 7 TeV were collected with the ATLAS experiment at the LHC and correspond to an integrated luminosity of 1.04 fb-1. The measured fractions of longitudinally, left- and right-handed polarization are F0 = 0.67 ± 0.07, FL = 0.32 ± 0.04 and FR = 0.01 ± 0.05, in agreement with the Standard Model predictions. As the polarization of the W bosons in top quark decays is sensitive to the Wtb vertex Lorentz structure and couplings, the measurements were used to set limits on anomalous contributions to the Wtb couplings. © CERN.

Search for the Standard Model Higgs boson in the H → τ+τ- decay mode in √s = 7TeV pp collisions with ATLAS

Journal of High Energy Physics 2012:9 (2012)

Authors:

G Aad, B Abbott, J Abdallah, S Abdel Khalek, AA Abdelalim, O Abdinov, B Abi, M Abolins, OS AbouZeid, H Abramowicz, H Abreu, E Acerbi, BS Acharya, L Adamczyk, DL Adams, TN Addy, J Adelman, S Adomeit, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Agustoni, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, M Ahsan, G Aielli, T Akdogan, TPA Åkesson, G Akimoto, AV Akimov, MS Alam, MA Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, F Alessandria, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, BMM Allbrooke, PP Allport, SE Allwood-Spiers, J Almond, A Aloisio, R Alon, A Alonso, B Alvarez Gonzalez, MG Alviggi, K Amako, C Amelung, VV Ammosov, A Amorim, N Amram, C Anastopoulos, LS Ancu, N Andari, T Andeen, CF Anders, G Anders, KJ Anderson, A Andreazza, V Andrei, XS Anduaga, P Anger, A Angerami, F Anghinolfi, A Anisenkov, N Anjos, A Annovi, A Antonaki, M Antonelli, A Antonov, J Antos, F Anulli, S Aoun, L Aperio Bella, R Apolle, G Arabidze, I Aracena, Y Arai, ATH Arce, S Arfaoui, Arguin J-F., E Arik, M Arik, AJ Armbruster, O Arnaez, V Arnal, C Arnault, A Artamonov, G Artoni

Abstract:

A search for the Standard Model Higgs boson decaying into a pair of τ leptons is reported. The analysis is based on a data sample of proton-proton collisions collected by the ATLAS experiment at the LHC and corresponding to an integrated luminosity of 4.7fb-1. No significant excess over the expected background is observed in the Higgs boson mass range of 100-150 GeV. The observed (expected) upper limits on the cross section times the branching ratio for H → τ+τ- are found to be between 2.9 (3.4) and 11.7 (8.2) times the Standard Model prediction for this mass range.