Measurement of the B meson and b quark cross-sections in $p\barp$ collisions at $\sqrts=$ 1.8-TeV using the exclusive decays $B^+ \to J/ψ K^+$ and $B^0 \to J/ψ K^*0$
16th International Symposium on Lepton and Photon Interactions
Measurement of the pion charge exchange differential cross section on Argon with the ProtoDUNE-SP detector
Abstract:
The Deep Underground Neutrino Experiment (DUNE) utilizes Liquid Argon Time Projection Chamber (LArTPC) technology in its pursuit of uncovering the origins of matter. As a crucial prototype for the DUNE far detector (FD) module, ProtoDUNE-SP at CERN Neutrino Platform Facility employs a hadron test beam with a momentum range of 0.3 to 7 GeV/c to study the detector response to particles that could be produced in the neutrino interactions at the DUNE FD. Furthermore, ProtoDUNE-SP is dedicated to testing event reconstruction and performing detector calibration under controlled conditions. Neutral pion reconstruction performance is an important benchmark of the calorimetric and tracking capability of LArTPC, and understanding neutral pion in LArTPC is crucial to characterize backgrounds to oscillation measurements and rare searches. To improve neutral pion reconstruction in LArTPC, a kinematic fitting algorithm is developed, achieving a 12% resolution in neutral pion energy in ProtoDUNE-SP. This enhancement enables the first measurements of the pion-argon charge exchange differential cross-section. By comparing these results with the current model, valuable constraints can be made to improve generator simulations in the future DUNE experiment.Measurements and simulations of drift gas properties
Abstract:
For the successful design and operation of gas based particle detectors, one needs a good understanding of the drift properties of the deployed gas. This includes the drift velocity of electrons, their diffusion and the gas amplification in different electric and magnetic fields. This work presents simulations and precision measurements of the drift velocity vd in low electric fields (< 400 V/cm) for argon-based gas mixtures with up to two additives. The additives used are CH4, CO2, CF4, iC4H10 and H2.Measurements of $\barν_μ$ and $\barν_μ + ν_μ$ charged-current cross-sections without detected pions nor protons on water and hydrocarbon at mean antineutrino energy of 0.86 GeV
Prog Theor Exp Phys (2021)
Abstract:
We report measurements of the flux-integrated $\bar{\nu}_\mu$ and $\bar{\nu}_\mu+\nu_\mu$ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam, with a mean neutrino energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced $\mu^\pm$ and no detected charged pion nor proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton module. The phase space of muons is restricted to the high-detection efficiency region, $p_{\mu}>400~{\rm MeV}/c$ and $\theta_{\mu}<30^{\circ}$, in the laboratory frame. Absence of pions and protons in the detectable phase space of "$p_{\pi}>200~{\rm MeV}/c$ and $\theta_{\pi}<70^{\circ}$", and "$p_{\rm p}>600~{\rm MeV}/c$ and $\theta_{\rm p}<70^{\circ}$" is required. In this paper, both of the $\bar{\nu}_\mu$ cross-sections and $\bar{\nu}_\mu+\nu_\mu$ cross-sections on water and hydrocarbon targets, and their ratios are provided by using D'Agostini unfolding method. The results of the integrated $\bar{\nu}_\mu$ cross-section measurements over this phase space are $\sigma_{\rm H_{2}O}\,=\,(1.082\pm0.068(\rm stat.)^{+0.145}_{-0.128}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, $\sigma_{\rm CH}\,=\,(1.096\pm0.054(\rm stat.)^{+0.132}_{-0.117}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, and $\sigma_{\rm H_{2}O}/\sigma_{\rm CH} = 0.987\pm0.078(\rm stat.)^{+0.093}_{-0.090}(\rm syst.)$. The $\bar{\nu}_\mu+\nu_\mu$ cross-section is $\sigma_{\rm H_{2}O} = (1.155\pm0.064(\rm stat.)^{+0.148}_{-0.129}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, $\sigma_{\rm CH}\,=\,(1.159\pm0.049(\rm stat.)^{+0.129}_{-0.115}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, and $\sigma_{\rm H_{2}O}/\sigma_{\rm CH}\,=\,0.996\pm0.069(\rm stat.)^{+0.083}_{-0.078}(\rm syst.)$.Measuring the electric dipole moment of the neutron: The cryoEDM experiment
Proceedings of Science EPS-HEP 2009 376