Precise measurements of W - and Z -boson transverse momentum spectra with the ATLAS detector using pp collisions at s = 5.02 TeV and 13 TeV

The European Physical Journal C SpringerOpen 84:10 (2024) 1126

Authors:

G Aad, B Abbott, K Abeling, NJ Abicht, SH Abidi, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, C Adam Bourdarios, L Adamczyk, L Adamek, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, J Agarwala, A Aggarwal, C Agheorghiesei

Abstract:

This paper describes measurements of the transverse momentum spectra of W and Z bosons produced in proton–proton collisions at centre-of-mass energies of s=5.02 TeV and s=13 TeV with the ATLAS experiment at the Large Hadron Collider. Measurements are performed in the electron and muon channels, W→ℓν and Z→ℓℓ (ℓ=e or μ), and for W events further separated by charge. The data were collected in 2017 and 2018, in dedicated runs with reduced instantaneous luminosity, and correspond to 255 and 338 pb-1 at s=5.02 TeV and 13 TeV, respectively. These conditions optimise the reconstruction of the W-boson transverse momentum. The distributions observed in the electron and muon channels are unfolded, combined, and compared to QCD calculations based on parton shower Monte Carlo event generators and analytical resummation. The description of the transverse momentum distributions by Monte Carlo event generators is imperfect and shows significant differences largely common to W-, W+ and Z production. The agreement is better at s=5.02 TeV, especially for predictions that were tuned to Z production data at s=7 TeV. Higher-order, resummed predictions based on DYTurbo generally match the data best across the spectra. Distribution ratios are also presented and test the understanding of differences between the production processes.

Constraints on simplified dark matter models involving an s -channel mediator with the ATLAS detector in pp collisions at s = 13 TeV

The European Physical Journal C SpringerOpen 84:10 (2024) 1102

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

This paper reports a summary of searches for a fermionic dark matter candidate in the context of theoretical models characterised by a mediator particle exchange in the s-channel. The data sample considered consists of pp collisions delivered by the Large Hadron Collider during its Run 2 at a centre-of-mass energy of s=13TeV and recorded by the ATLAS detector, corresponding to up to 140 fb-1. The interpretations of the results are based on simplified models where the new mediator particles can be spin-0, with scalar or pseudo-scalar couplings to fermions, or spin-1, with vector or axial-vector couplings to fermions. Exclusion limits are obtained from various searches characterised by final states with resonant production of Standard Model particles, or production of Standard Model particles in association with large missing transverse momentum.

Fiducial and differential cross-section measurements of electroweak Wγjj production in pp collisions at s=13 TeV with the ATLAS detector

European Physical Journal C Springer Nature 84:10 (2024) 1064

Demonstration of neutron identification in neutrino interactions in the MicroBooNE liquid argon time projection chamber

The European Physical Journal C SpringerOpen 84:10 (2024) 1052

Authors:

P Abratenko, O Alterkait, D Andrade Aldana, L Arellano, J Asaadi, A Ashkenazi, S Balasubramanian, B Baller, A Barnard, G Barr, D Barrow, J Barrow, V Basque, J Bateman, O Benevides Rodrigues, S Berkman, A Bhanderi, A Bhat, M Bhattacharya, M Bishai, A Blake, B Bogart, T Bolton, JY Book, K Duffy

Abstract:

A significant challenge in measurements of neutrino oscillations is reconstructing the incoming neutrino energies. While modern fully-active tracking calorimeters such as liquid argon time projection chambers in principle allow the measurement of all final state particles above some detection threshold, undetected neutrons remain a considerable source of missing energy with little to no data constraining their production rates and kinematics. We present the first demonstration of tagging neutrino-induced neutrons in liquid argon time projection chambers using secondary protons emitted from neutron-argon interactions in the MicroBooNE detector. We describe the method developed to identify neutrino-induced neutrons and demonstrate its performance using neutrons produced in muon-neutrino charged current interactions. The method is validated using a small subset of MicroBooNE’s total dataset. The selection yields a sample with 60% of selected tracks corresponding to neutron-induced secondary protons. At this purity, the integrated efficiency is 8.4% for neutrons that produce a detectable proton.

Sensor response and radiation damage effects for 3D pixels in the ATLAS IBL Detector

Journal of Instrumentation IOP Publishing 19:10 (2024) P10008

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

Pixel sensors in 3D technology equip the outer ends of the staves of the Insertable B Layer (IBL), the innermost layer of the ATLAS Pixel Detector, which was installed before the start of LHC Run 2 in 2015. 3D pixel sensors are expected to exhibit more tolerance to radiation damage and are the technology of choice for the innermost layer in the ATLAS tracker upgrade for the HL-LHC programme. While the LHC has delivered an integrated luminosity of ≃ 235 fb-1 since the start of Run 2, the 3D sensors have received a non-ionising energy deposition corresponding to a fluence of ≃ 8.5 × 1014 1 MeV neutron-equivalent cm-2 averaged over the sensor area. This paper presents results of measurements of the 3D pixel sensors' response during Run 2 and the first two years of Run 3, with predictions of its evolution until the end of Run 3 in 2025. Data are compared with radiation damage simulations, based on detailed maps of the electric field in the Si substrate, at various fluence levels and bias voltage values. These results illustrate the potential of 3D technology for pixel applications in high-radiation environments.