On unveiling buried nuclei with JWST: A technique for hunting the most obscured galaxy nuclei from local to high redshift
Astronomy & Astrophysics EDP Sciences 696 (2025) ARTN A135
Abstract:
We analyze JWST NIRSpec+MIRI/MRS observations of the infrared (IR) polycyclic aromatic hydrocarbon (PAH) features in the central regions (a at 6 μm; a 440 pc depending on the source) of local luminous IR galaxies. In this work, we examine the effect of nuclear obscuration on the PAH features of deeply obscured nuclei, predominantly found in local luminous IR galaxies, and we compare these nuclei with astar-forming regions. We extend previous work to include shorter wavelength PAH ratios now available with the NIRSpec+MIRI/MRS spectral range. We introduce a new diagnostic diagram for selecting deeply obscured nuclei based on the 3.3 and 6.2 μm PAH features and/or mid-IR continuum ratios at a3 and 5 μm. We find that the PAH equivalent width ratio of the brightest PAH features at shorter wavelengths (at 3.3 and 6.2 μm) is impacted by nuclear obscuration. Although the sample of luminous IR galaxies used in this analysis is relatively small, we find that sources exhibiting a high silicate absorption feature cluster tightly in a specific region of the diagram, whereas star-forming regions experiencing lower extinction levels occupy a different area in the diagram. This demonstrates the potential of this technique to identify buried nuclei. To leverage the excellent sensitivity of the MIRI imager on board JWST, we extend our method of identifying deeply obscured nuclei at higher redshifts using a selection of MIRI filters. Specifically, the combination of various MIRI JWST filters enables the identification of buried sources beyond the local Universe and up to za 3, where other commonly used obscuration tracers such as the 9.7 μm silicate band, are out of the spectral range of MRS. Our results pave the way for identifying distant deeply obscured nuclei with JWST.Demonstration of 24-hour continuous optical turbulence monitoring in a city
Optics Express Optica Publishing Group 33:5 (2025) 10140
The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data
Journal of Instrumentation IOP Publishing 20:02 (2025) P02021
Abstract:
This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions.On unveiling Buried Nuclei with JWST: a technique for hunting the most obscured galaxy nuclei from local to high redshift
(2025)
Quantum Technologies for the Einstein Telescope
Galaxies MDPI AG 13:1 (2025) 11-11