Mid-Infrared line diagnostics of active galaxies*

Astronomy & Astrophysics EDP Sciences 393:3 (2002) 821-841

Authors:

E Sturm, D Lutz, A Verma, H Netzer, A Sternberg, AFM Moorwood, E Oliva, R Genzel

Observations of hyperluminous infrared galaxies with the Infrared Space Observatory: Implications for the origin of their extreme luminosities

Monthly Notices of the Royal Astronomical Society 335:3 (2002) 574-592

Authors:

A Verma, M Rowan-Robinson, R McMahon, A Efstathiou

Abstract:

We present 7-180 μm photometry of a sample of hyperluminous infrared galaxies (HyLIGs) obtained with the photometer and camera mounted on the Infrared Space Observatory. We have used radiative transfer models of obscured starbursts and dusty torii to model their spectral energy distributions (SEDs). We find that IRAS F00235+1024, IRAS F14218+3845 and IRAS F15307+3252 require a combination of starburst and active galactic nuclei (AGN) components to explain their mid-to far-infrared (FIR) emission, while for TXS 0052+471 a dust torus AGN model alone is sufficient. For IRAS F00235+1024 and IRAS F14218+3845 the starburst component is the predominant contributor, whereas for IRAS F15307+3252 the dust torus component dominates. The implied star formation rates (SFRs) for these three sources estimated from their infrared luminosities are M*,all > 3000 M⊙ yr-1 h-250 and are amongst the highest SFRs estimated to date. We also demonstrate that the well-known radio-FIR correlation extends into both higher radio and infrared power than previously investigated. The relation for HyLIGs has a mean q value of 1.94. The results of this study imply that better sampling of the infrared spectral energy distributions of HyLIGs may reveal that both AGN and starburst components are required to explain all the emission from the near-infrared to the submillimetre.

The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe

Monthly Notices of the Royal Astronomical Society 335:2 (2002) 432-440

Authors:

L Verde, AF Heavens, WJ Percival, S Matarrese, CM Baugh, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, M Colless, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, D Madgwick, P Norberg, JA Peacock, BA Peterson, W Sutherland, K Taylor

Abstract:

We compute the bispectrum of the 2dF Galaxy Redshift Survey (2dFGRS) and use it to measure the bias parameter of the galaxies. This parameter quantifies the strength of clustering of the galaxies relative to the mass in the Universe. By analysing 80 × 106 triangle configurations in the wavenumber range 0.1 < k < 0.5 h Mpc-1 (i.e. on scales roughly between 5 and 30 h-1 Mpc) we find that the linear bias parameter is consistent with unity: b1 = 1.04 ± 0.11, and the quadratic (non-linear) bias is consistent with zero: b2 = -0.054 ± 0.08. Thus, at least on large scales, optically selected galaxies do indeed trace the underlying mass distribution. The bias parameter can be combined with the 2dFGRS measurement of the redshift distortion parameter β ≃ Ω0.6m/b1, to yield Ωm = 0.27 ± 0.06 for the matter density of the Universe, a result that is determined entirely from this survey, independent of other data sets. Our measurement of the matter density of the Universe should be interpreted as Ωm at the effective redshift of the survey (z = 0.17).

The BTC40 Survey for Quasars at 4.8 < z < 6

(2002)

Authors:

EM Monier, JD Kennefick, PB Hall, PS Osmer, MG Smith, GB Dalton, RF Green

The 2dF galaxy redshift survey: The environmental dependence of galaxy star formation rates near clusters

Monthly Notices of the Royal Astronomical Society 334:3 (2002) 673-683

Authors:

I Lewis, M Balogh, R De Propris, W Couch, R Bower, A Offer, J Bland-Hawthorn, IK Baldry, C Baugh, T Bridges, R Cannon, S Cole, M Colless, C Collins, N Cross, G Dalton, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, E Hawkins, C Jackson, O Lahav, S Lumsden, S Maddox, D Madgwick, P Norberg, JA Peacock, W Percival, BA Peterson, W Sutherland, K Taylor

Abstract:

We have measured the equivalent width of the Ha emission line for 11 006 galaxies brighter than Mb, = -19 (ΩΛ = 0.7, Ωm = 0.3, H0 = 70 km s-1 Mpc-1) at 0.05 < z < 0.1 in the 2dF Galaxy Redshift Survey (2dFGRS), in the fields of 17 known galaxy clusters. The limited redshift range ensures that our results are insensitive to aperture bias, and to residuals from night sky emission lines. We use these measurements to trace μ*, the star formation rate normalized to L*, as a function of distance from the cluster centre, and local projected galaxy density. We find that the distribution of μ* steadily skews toward larger values with increasing distance from the cluster centre, converging to the field distribution at distances greater than ∼3 times the virial radius. A correlation between star formation rate and local projected density is also found, which is independent of cluster velocity dispersion and disappears at projected densities below ∼1 galaxy Mpc-2 (brighter than Mb, = -19). This characteristic scale corresponds approximately to the mean density at the cluster virial radius. The same correlation holds for galaxies more than two virial radii from the cluster centre. We conclude that environmental influences on galaxy properties are not restricted to cluster cores, but are effective in all groups where the density exceeds this critical value. The present-day abundance of such systems, and the strong evolution of this abundance, makes it likely that hierarchical growth of structure plays a significant role in decreasing the global average star formation rate. Finally, the low star formation rates well beyond the virialized cluster rule out severe physical processes, such as ram pressure stripping of disc gas, as being completely responsible for the variations in galaxy properties with environment.