Ultr-Luminous Infrared Galaxies: QSOs in Formation?

ArXiv astro-ph/0207405 (2002)

Authors:

LJ Tacconi, R Genzel, D Lutz, D Rigopoulou, AJ Baker, C Iserlohe, M Tecza

Abstract:

We present new near-infrared Keck and VLT spectroscopic data on the stellar dynamics in late stage, ultra-luminous infrared galaxy (ULIRG) mergers . We now have information on the structural and kinematic properties of 18 ULIRGs, 8 of which contain QSO-like active galactic nuclei. The host properties (velocity dispersion, effective radius, effective surface brightness, M_K) of AGN-dominated and star formation dominated ULIRGs are similar. ULIRGs fall remarkably close to the fundamental plane of early type galaxies. They populate a wide range of the plane, are on average similar to L*-rotating ellipticals, but are well offset from giant ellipticals and optically/UV bright, low-z QSOs/radio galaxies. ULIRGs and local QSOs/radio galaxies are very similar in their distributions of bolometric and extinction corrected near-IR luminosities, but ULIRGs have smaller effective radii and velocity dispersions than the local QSO/radio galaxy population. Hence, their host masses and inferred black hole masses are correspondingly smaller. The latter are more akin to those of local Seyfert galaxies. ULIRGs thus resemble local QSOs in their near-IR and bolometric luminosities because they are (much more) efficiently forming stars and/or feeding their black holes, and not because they have QSO-like, very massive black holes. We conclude that ULIRGs as a class cannot evolve into optically bright QSOs. They will more likely become quiescent, moderate mass field ellipticals or, when active, might resemble the X-ray bright, early type galaxies that have recently been found by the Chandra Observatory.

The 2dF Galaxy Redshift Survey: The amplitudes of fluctuations in the 2dFGRS and the CMB, and implications for galaxy biasing

Monthly Notices of the Royal Astronomical Society 333:4 (2002) 961-968

Authors:

O Lahav, SL Bridle, WJ Percival, JA Peacock, G Efstathiou, CM Baugh, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, M Colless, C Collins, W Couch, G Dalton, R De Propris, SP Driver, RS Ellis, CS Frenk, K Glazebrook, C Jackson, I Lewis, S Lumsden, S Maddox, DS Madgwick, S Moody, P Norberg, BA Peterson, W Sutherland, K Taylor

Abstract:

We compare the amplitudes of fluctuations probed by the 2dF Galaxy Redshift Survey (2dFGRS) and by the latest measurements of the cosmic microwave background (CMB) anisotropies. By combining the 2dFGRS and CMB data, we find the linear-theory rms mass fluctuations in 8 h-1 Mpc spheres to be σ8m = 0.73 ± 0.05 (after marginalization over the matter density parameter Ωm and three other free parameters). This normalization is lower than the COBE normalization and previous estimates from cluster abundance, but it is in agreement with some revised cluster abundance determinations. We also estimate the scale-independent bias parameter of present-epoch Ls = 1.9L* APM-selected galaxies to be b(Ls, z = 0) = 1.10 ± 0.08 on comoving scales of 0.02 < k < 0.15 h Mpc-1. If luminosity segregation operates on these scales, L* galaxies would be almost unbiased, b(L*,z = O) ≈ 0.96. These results are derived by assuming a flat ACDM Universe, and by marginalizing over other free parameters and fixing the spectral index n = 1 and the optical depth due to reionization τ = 0. We also study the best-fitting pair (Ωm, b), and the robustness of the results to varying n and τ. Various modelling corrections can each change the resulting b by 5 - 15 per cent. The results are compared with other independent measurements from the 2dFGRS itself, and from the Sloan Digital Sky Survey (SDSS), cluster abundance and cosmic shear.

Parameter constraints for flat cosmologies from CMB and 2dFGRS power spectra

(2002)

Authors:

Will J Percival, Will Sutherland, John A Peacock, Carlton M Baugh, Joss Bland-Hawthorn, Terry Bridges, Russell Cannon, Shaun Cole, Matthew Colless, Chris Collins, Warrick Couch, Gavin Dalton, Roberto De Propris, Simon P Driver, George Efstathiou, Richard S Ellis, Carlos S Frenk, Karl Glazebrook, Carole Jackson, Ofer Lahav, Ian Lewis, Stuart Lumsden, Steve Maddox, Stephen Moody, Peder Norberg, Bruce A Peterson, Keith Taylor

The 2dF Galaxy Redshift Survey: The population of nearby radio galaxies at the 1-mJy level

Monthly Notices of the Royal Astronomical Society 333:1 (2002) 100-120

Authors:

M Magliocchetti, SJ Maddox, CA Jackson, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, M Colless, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, K Glazebrook, O Lahav, I Lewis, S Lumsden, JA Peacock, BA Peterson, W Sutherland, K Taylor

Abstract:

We use redshift determinations and spectral analysis of galaxies in the 2dF Galaxy Redshift Survey to study the properties of local radio sources with S ≥ 1 mJy. 557 objects (hereafter called the spectroscopic sample) drawn from the FIRST survey, corresponding to 2.3 per cent of the total radio sample, are found in the 2dFGRS catalogue within the area 9h48m ≲ RA(2000) ≲ 14h32m and -2o.77 ≲ Dec.(2000) ≲ 2o.25, down to a magnitude limit bJ = 19.45. The excellent quality of 2dF spectra allows us to divide these sources into classes, according to their optical spectra. Absorption-line systems make up 63 per cent of the spectroscopic sample. These may or may not show emission lines due to AGN activity, and correspond to 'classical' radio galaxies belonging mainly to the FRI class. They are characterized by relatively high radio-to-optical ratios, red colours, and high radio luminosities (1021 ≲ P1.4 GHz/W Hz-1 sr-1 ≲ 1024). Actively star-forming galaxies contribute about 32 per cent of the sample. These objects are mainly found at low redshifts (z ≲ 0.1) and show low radio-to-optical ratios, blue colours and low radio luminosities. We also found 18 Seyfert 2 galaxies (3 per cent) and four Seyfert 1s (1 per cent). Analysis of the local radio luminosity function (LF) shows that radio galaxies are well described by models that assume pure luminosity evolution, at least down to radio powers P1.4 GHz ≲ 1020.5 W Hz-1 sr-1. Late-type galaxies, whose relative contribution to the radio LF is found to be lower than was predicted by previous works, present an LF which is comparable with the IRAS galaxy LF. This class of sources therefore plausibly constitutes the radio counterpart of the dusty spirals and starbursts that dominate the counts at 60 μm.

Observations of the Hubble Deep Field South with the Infrared Space Observatory - I. Observations, data reduction and mid-infrared source counts

Monthly Notices of the Royal Astronomical Society 332:3 (2002) 536-548

Authors:

S Oliver, RG Mann, R Carballo, A Franceschini, M Rowan-Robinson, M Kontizas, A Dapergolas, E Kontizas, A Verma, D Elbaz, GL Granato, L Silva, D Rigopoulou, JI Gonzalez-Serrano, S Serjeant, A Efstathiou, PP Van Der Werf

Abstract:

We present results from a deep mid-infrared survey of the Hubble Deep Field South (HDF-S) region performed at 6.7 and 15 μm with the ISOCAM instrument on board the Infrared Space Observatory (ISO). The final map in each band was constructed by the co-addition of four independent rasters, registered using bright sources securely detected in all rasters, with the absolute astrometry being defined by a radio source detected at both 6.7 and 15 μm. We sought detections of bright sources in a circular region of radius 2.5 arcmin at the centre of each map, in a manner that simulations indicated would produce highly reliable and complete source catalogues using simple selection criteria. Merging source lists in the two bands yielded a catalogue of 35 distinct sources, which we calibrated photometrically using photospheric models of late-type stars detected in our data. We present extragalactic source count results in both bands, and discuss the constraints that they impose on models of galaxy evolution, given the volume of space sampled by this galaxy population.