The 2dF Galaxy Redshift Survey: The b_J-band galaxy luminosity function and survey selection function

(2001)

Authors:

P Norberg, S Cole, C Baugh, C Frenk, I Baldry, J Bland-Hawthorn, T Bridges, R Cannon, M Colless, C Collins, W Couch, N Cross, G Dalton, R De Propris, S Driver, G Efstathiou, R Ellis, K Glazebrook, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, D Madgwick, J Peacock, B Peterson, W Sutherland, K Taylor

The 2dF Galaxy Redshift Survey: constraints on cosmic star-formation history from the cosmic spectrum

(2001)

Authors:

IK Baldry, K Glazebrook, CM Baugh, J Bland-Hawthorn, T Bridges, R Cannon, S Cole, M Colless, C Collins, W Couch, G Dalton, R De Propris, SP Driver, G Efstathiou, RS Ellis, CS Frenk, E Hawkins, C Jackson, O Lahav, I Lewis, S Lumsden, S Maddox, DS Madgwick, P Norberg, JA Peacock, BA Peterson, W Sutherland, K Taylor

Infrared polarimetry of the southern massive star-forming region G333.6-0.2

Monthly Notices of the Royal Astronomical Society 327:1 (2001) 233-243

Authors:

T Fujiyoshi, CH Smith, CM Wright, TJT Moore, DK Aitken, PF Roche

Abstract:

We present 8-13 μm spectropolarimetry, and 12- and 2-μm imaging polarimetry of the southern massive star-forming region G333.6-0.2. Spectropolarimetry measurements show that the polarization observed towards the nebula contains a mixture of both absorptive and emissive polarizations. Model fitting to the spectra indicates that the temperature of the mid-infrared emitting dust grains is generally ∼200 K and the optical depth of the absorbing dust at 9.7 μm is ∼ 1.5. Fits are also made to the polarimetry spectra, which show a reasonably constant peak absorptive polarization (∼3.4 per cent at 43°) across the face of the H II region. This absorptive polarization position angle is consistent with that found by the 2-μm imaging polarimetry (38° ± 6°) and is most likely due to the Galactic magnetic field local to G333.6-0.2. When the absorptive polarization is subtracted from the 12-μm polarization image, the emissive polarization pattern that is intrinsic to the star-forming region is revealed. A probable magnetic field configuration implied by the intrinsic polarization suggests star formation initially influenced by the Galactic magnetic field which is eventually perturbed by the star formation process.

HST imaging of hyperluminous infrared galaxies

arXiv (2001)

Authors:

D Farrah, Aprajita Verma, S Oliver, M Rowan-Robinson, R McMahon

Abstract:

We present HST WFPC2 I band imaging for a sample of 9 Hyperluminous Infrared Galaxies spanning a redshift range 0.45 < z < 1.34. Three of the sample have morphologies showing evidence for interactions, six are QSOs. Host galaxies in the QSOs are reliably detected out to z ~ 0.8. The detected QSO host galaxies have an elliptical morphology with scalelengths spanning 6.5 < r_{e}(Kpc) < 88 and absolute k corrected magnitudes spanning -24.5 < M_{I} < -25.2. There is no clear correlation between the IR power source and the optical morphology. None of the sources in the sample, including F15307+3252, show any evidence for gravitational lensing. We infer that the IR luminosities are thus real. Based on these results, and previous studies of HLIRGs, we conclude that this class of object is broadly consistent with being a simple extrapolation of the ULIRG population to higher luminosities; ULIRGs being mainly violently interacting systems powered by starbursts and/or AGN. Only a small number of sources whose infrared luminosities exceed 10^{13}Lsun are intrinsically less luminous objects which have been boosted by gravitational lensing.

HST imaging of hyperluminous infrared galaxies

(2001)

Authors:

D Farrah, A Verma, S Oliver, M Rowan-Robinson, R McMahon