A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey
Nature 410 (2001) 169-173
Galaxy mapping with the sauron integral-field spectrograph: The star formation history of NGC 4365
Astrophysical Journal 548:1 PART 2 (2001)
Abstract:
We report the first wide-field mapping of the kinematics and stellar populations in the E3 galaxy NGC 4365. The velocity maps extend previous long-slit work. They show two independent kinematic subsystems: the central 300 pc × 700 pc rotates about the projected minor axis, and the main body of the galaxy, 3 kpc × 4 kpc, rotates almost at right angles to this. The line strength maps show that the metallicity of the stellar population decreases from a central value greater than solar to one-half solar at a radius of 2 kpc. The decoupled core and main body of the galaxy have the same luminosity-weighted age, ≈14 Gyr, and the same elevated magnesium-to-iron ratio. The two kinematically distinct components have thus shared a common star formation history. We infer that the galaxy underwent a sequence of mergers associated with dissipative star formation that ended ≳ 12 Gyr ago. The misalignment between the photometric and kinematic axes of the main body is unambiguous evidence of triaxiality. The similarity of the stellar populations in the two components suggests that the observed kinematic structure has not changed substantially in 12 Gyr.The Galactic disc distribution of planetary nebulae with warm dust emission features - II
Monthly Notices of the Royal Astronomical Society 320:4 (2001) 435-444
Abstract:
We address the question of whether the distribution of warm-dust compositions in IR-bright Galactic disc PNe (Paper I, Casassus et al.) can be linked to the underlying stellar population. The PNe with warm dust emission represent a homogeneous population, which is presumably young and minimally affected by a possible dependence of PN lifetime on progenitor mass. The sample in Paper I thus allows testing of the predictions of single-star evolution, through a comparison with synthetic distributions and under the assumption that tip-of-the-AGB and PN statistics are similar. We construct a schematic model for AGB evolution (adapted from Groenewegen & de Jong), the free parameters of which are calibrated with the luminosity function (LF) of C stars in the LMC, the initial-final mass relation and the range of PN compositions. The observed metallicity gradient and distribution of star-forming regions with Galactocentric radius (Bronfman et al.) allow us to synthesize the Galactic disc PN progenitor population. We find that the fraction of O-rich PNe, f(O), is a tight constraint on AGB parameters. For our best model, a minimum PN progenitor mass Mmin = 1 M⊙ predicts that about 50 per cent of all young PNe should be O-rich compared with an observed fraction of 22 per cent; thus Mmin = 1.2 M⊙, at a 2σ confidence level (Mmin = 1.3 M⊙ at 1σ). By contrast, current AGB models for single stars can account neither for the continuous range of N enrichment (Leisy & Dennefeld) nor for the observation that the majority of very C-rich PNe have Peimbert type I (Paper I). f(O) is thus an observable quantity much easier to model. The decrease in f(O) with Galactocentric radius as reported in Paper I, is a strong property of the synthetic distribution, independent of Mmin. This trend reflects the sensitivity of the surface temperature of AGB stars and of the core mass at the first thermal pulse to the Galactic metallicity gradient.The Galactic disc distribution of planetary nebulae with warm dust emission features - I
Monthly Notices of the Royal Astronomical Society 320:4 (2001) 424-434
Abstract:
We investigate the Galactic disc distribution of a sample of planetary nebulae characterized in terms of their mid-infrared spectral features. The total number of Galactic disc PNe with 8-13 μm spectra is brought up to 74 with the inclusion of 24 new objects, the spectra of which we present for the first time. 54 PNe have clearly identified warm dust emission features, and form a sample that we use to construct the distribution of the C/O chemical balance in Galactic disc PNe. The dust emission features complement the information on the progenitor masses brought by the gas-phase N/O ratios: PNe with unidentified infrared emission bands have the highest N/O ratios, while PNe with the silicate signature have either very high N enrichment or close to none. We find a trend for a decreasing proportion of O-rich PNe towards the third and fourth Galactic quadrants. Two independent distance scales confirm that the proportion of O-rich PNe decreases from 30 ± 9 per cent inside the solar circle to 14 ± 7 per cent outside. PNe with warm dust are also the youngest. PNe with no warm dust are uniformly distributed in C/O and N/O ratios, and do not appear to be confined to C/O ∼ 1. They also have higher 6-cm fluxes, as expected from more evolved PNe. We show that the IRAS fluxes are a good representation of the bolometric flux for compact and IR-bright PNe, which are probably optically thick. Selection of objects with F(12 μm) > 0.5 Jy should probe a good portion of the Galactic disc for these young, dense and compact nebulae, and the dominant selection effects are rooted in the PN catalogues.The Star Formation of NGC 4365
Astrophysical Journal Letters 548 (2001) L33-L36