Observations of Infrared Emission from Galaxies
Proceedings of the 135th Symposium of the International Astronomical Union
Opportunities in Infrared Astronomy from Dome C
Optical integral field spectroscopy of intermediate redshift infrared bright galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP)
Abstract:
The extreme infrared (IR) luminosity of local luminous and ultra-luminous IR galaxies (U/LIRGs; 11 < log LIR /Lsun < 12 and log LIR /Lsun > 12, respectively) is mainly powered by star-formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, they dominate the star-formation rate (SFR) density, and a fraction of them are found to be normal disk galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H{\alpha}+[NII] observations of a sample of 9 intermediate-z (0.2 < z < 0.4) U/LIRG systems selected from Herschel 250{\mu}m observations. The main results are the following: (a) the ratios between the velocity dispersion and the rotation curve amplitude indicate that 10-25% (1-2 out of 8) might be compatible with being isolated disks while the remaining objects are interacting/merging systems; (b) the ratio between un-obscured and obscured SFR traced by H{\alpha} and LIR, respectively, is similar in both local and these intermediate-z U/LIRGs; and (c) the ratio between 250{\mu}m and the total IR luminosities of these intermediate-z U/LIRGs is higher than that of local U/LIRGs with the same LIR . This indicates a reduced dust temperature in these intermediate-z U/LIRGs. This, together with their already measured enhanced molecular gas content, suggests that the interstellar medium conditions are different in our sample of intermediate-z galaxies when compared to local U/LIRGs.
Optimisation of the WEAVE target assignment algorithm
Ground-based and Airborne Instrumentation for Astronomy IX Proc. SPIE 12184 (2022) 121846J
Abstract:
WEAVE is the new wide-field spectroscopic facility for the prime focus of the William Herschel Telescope in La Palma, Spain. Its fibre positioner is essential for the accurate placement of the spectrograph's ~960-fibre multiplex. To maximise the assignment of its optical fibres, WEAVE uses a simulated annealing algorithm called Configure, which allocates the fibres to targets in the field of view. We have conducted an analysis of the algorithm's behaviour using a subset of mid-tier WEAVE LOFAR fields, and adjusted the priority assignment algorithm to optimise the total fibres assigned per field, and the assignment of fibres to the higher priority science targets. The output distributions have been examined, to investigate the implications for the WEAVE science teams.
Results of the Gemini Deep Planet Survey -- Constraints on the Existence of Planets on Wide Orbits
Proceedings of the conference In the Spirit of Bernard Lyot, UCB