Modelling the infrared continuum of Centaurus A

ESA SP-427

Authors:

DM Alexander, A Efstathiou, JH Hough, D Lutz, PF Roche, E Sturm

Near Infrared Spectra of Brown Dwarf Candidates in Orion

Authors:

DJ Weights, PW Lucas, PF Roche

Observations of Infrared Emission from Galaxies

Proceedings of the 135th Symposium of the International Astronomical Union

Opportunities in Infrared Astronomy from Dome C

Optical integral field spectroscopy of intermediate redshift infrared bright galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP)

Authors:

M Pereira-Santaella, D Rigopoulou, GE Magdis, N Thatte, A Alonso-Herrero, F Clarke, D Farrah, S García-Burillo, L Hogan, S Morris, M Rodrigues, J-S Huang, M Tecza

Abstract:

The extreme infrared (IR) luminosity of local luminous and ultra-luminous IR galaxies (U/LIRGs; 11 < log LIR /Lsun < 12 and log LIR /Lsun > 12, respectively) is mainly powered by star-formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, they dominate the star-formation rate (SFR) density, and a fraction of them are found to be normal disk galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H{\alpha}+[NII] observations of a sample of 9 intermediate-z (0.2 < z < 0.4) U/LIRG systems selected from Herschel 250{\mu}m observations. The main results are the following: (a) the ratios between the velocity dispersion and the rotation curve amplitude indicate that 10-25% (1-2 out of 8) might be compatible with being isolated disks while the remaining objects are interacting/merging systems; (b) the ratio between un-obscured and obscured SFR traced by H{\alpha} and LIR, respectively, is similar in both local and these intermediate-z U/LIRGs; and (c) the ratio between 250{\mu}m and the total IR luminosities of these intermediate-z U/LIRGs is higher than that of local U/LIRGs with the same LIR . This indicates a reduced dust temperature in these intermediate-z U/LIRGs. This, together with their already measured enhanced molecular gas content, suggests that the interstellar medium conditions are different in our sample of intermediate-z galaxies when compared to local U/LIRGs.