MOSAIC on the ELT: high-multiplex spectroscopy to unravel the physics of stars and galaxies from the dark ages to the present-day

The ESO Messenger (2021)

Authors:

F Hammer, S Morris, Jg Cuby, L Kaper, M Steinmetz, J Afonso, B Barbuy, E Bergin, A Finogenov, J Gallego, S Kassin, L Penterricci, D Schaerer, B Ziegler, K Dohlen, M Dubbeldam, K El Hadi, A Janssen, A Kelz, M Larrieu, I Lewis, M MacIntosh, T Morris, R Navarro, W Seifert

Abstract:

The powerful combination of the cutting-edge multi-object spectrograph MOSAIC with the world largest telescope, the ELT, will allow us to probe deeper into the Universe than was possible. MOSAIC is an extremely efficient instrument in providing spectra for the numerous faint sources in the Universe, including the very first galaxies and sources of cosmic reionization. MOSAIC has a high multiplex in the NIR and in the VIS, in addition to multi-Integral Field Units (Multi-IFUs) in NIR. As such it is perfectly suited to carry out an inventory of dark matter (from rotation curves) and baryons in the cool-warm gas phases in galactic haloes at z=3-4. MOSAIC will enable detailed maps of the intergalactic medium at z=3, the evolutionary history of dwarf galaxies during a Hubble time, the chemistry directly measured from stars up to several Mpc. Finally, it will measure all faint features seen in cluster gravitational lenses or in streams surrounding nearby galactic halos, providing MOSAIC to be a powerful instrument with an extremely large space of discoveries. The preliminary design of MOSAIC is expected to begin next year, and its level of readiness is already high, given the instrumental studies made by the team.

First Detection of Hydroxyl Radical Emission from an Exoplanet Atmosphere: High-dispersion Characterization of WASP-33b using Subaru/IRD

(2021)

Authors:

Stevanus K Nugroho, Hajime Kawahara, Neale P Gibson, Ernst JW de Mooij, Teruyuki Hirano, Takayuki Kotani, Yui Kawashima, Kento Masuda, Matteo Brogi, Jayne L Birkby, Chris A Watson, Motohide Tamura, Konstanze Zwintz, Hiroki Harakawa, Tomoyuki Kudo, Masayuki Kuzuhara, Klaus Hodapp, Masato Ishizuka, Shane Jacobson, Mihoko Konishi, Takashi Kurokawa, Jun Nishikawa, Masashi Omiya, Takuma Serizawa, Akitoshi Ueda, Sébastien Vievard

First Detection of Hydroxyl Radical Emission from an Exoplanet Atmosphere: High-dispersion Characterization of WASP-33b Using Subaru/IRD *Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

The Astrophysical Journal Letters American Astronomical Society 910:1 (2021) l9

Authors:

Stevanus K Nugroho, Hajime Kawahara, Neale P Gibson, Ernst JW de Mooij, Teruyuki Hirano, Takayuki Kotani, Yui Kawashima, Kento Masuda, Matteo Brogi, Jayne L Birkby, Chris A Watson, Motohide Tamura, Konstanze Zwintz, Hiroki Harakawa, Tomoyuki Kudo, Masayuki Kuzuhara, Klaus Hodapp, Masato Ishizuka, Shane Jacobson, Mihoko Konishi, Takashi Kurokawa, Jun Nishikawa, Masashi Omiya, Takuma Serizawa, Akitoshi Ueda, Sébastien Vievard

A low [CII]/[NII] ratio in the center of a massive galaxy at z = 3.7: Evidence for a transition to quiescence at high redshift?

Astronomy & Astrophysics EDP Sciences 646 (2021) a68

Authors:

C Schreiber, K Glazebrook, C Papovich, T Díaz-Santos, A Verma, D Elbaz, GG Kacprzak, T Nanayakkara, P Oesch, M Pannella, L Spitler, C Straatman, K-V Tran, T Wang

Predicting the observability of population III stars with ELT-HARMONI via the helium 1640 Å emission line

Monthly Notices of the Royal Astronomical Society Oxford University Press 501:4 (2021) 5517-5537

Authors:

Kearn Grisdale, Niranjan Thatte, Julien Devriendt, Miguel Pereira Santaella, Adrianne Slyz, Taysun Kimm, Yohan Dubois, Sukyoung Yi

Abstract:

Population III (Pop. III) stars, as of yet, have not been detected, however as we move into the era of extremely large telescopes this is likely to change. One likely tracer for Pop. III stars is the He IIλ1640 emission line, which will be detectable by the HARMONI spectrograph on the European Extremely Large Telescope (ELT) over a broad range of redshifts (2 ≤ z ≤ 14). By post-processing galaxies from the cosmological, AMR-hydrodynamical simulation NEWHORIZON with theoretical spectral energy distributions (SED) for Pop. III stars and radiative transfer (i.e. the Yggdrasil Models and CLOUDY look-up tables, respectively) we are able to compute the flux of He IIλ1640 for individual galaxies. From mock 10 h observations of these galaxies we show that HARMONI will be able to detect Pop. III stars in galaxies up to z ∼ 10 provided Pop. III stars have a top heavy initial mass function (IMF). Furthermore, we find that should Pop. III stars instead have an IMF similar to those of the Pop. I stars, the He IIλ1640 line would only be observable for galaxies with Pop. III stellar masses in excess of 107M⊙⁠, average stellar age <1Myr at z = 4. Finally, we are able to determine the minimal intrinsic flux required for HARMONI to detect Pop. III stars in a galaxy up to z = 10.