A low [CII]/[NII] ratio in the center of a massive galaxy at z = 3.7: Evidence for a transition to quiescence at high redshift? (Corrigendum)

Astronomy & Astrophysics EDP Sciences 650 (2021) c2

Authors:

C Schreiber, K Glazebrook, C Papovich, T Díaz-Santos, A Verma, D Elbaz, GG Kacprzak, T Nanayakkara, P Oesch, M Pannella, L Spitler, C Straatman, K-V Tran, T Wang

Origins space telescope: from first light to life

Experimental Astronomy Springer Nature 51:3 (2021) 595-624

Authors:

MC Wiedner, S Aalto, L Armus, E Bergin, J Birkby, CM Bradford, D Burgarella, P Caselli, V Charmandaris, A Cooray, E De Beck, JM Desert, M Gerin, J Goicoechea, M Griffin, P Hartogh, F Helmich, M Hogerheijde, L Hunt, A Karska, Q Kral, D Leisawitz, G Melnick, M Meixner, M Matsuura, S Milam, C Pearson, DW Pesce, KM Pontoppidan, A Pope, D Rigopoulou, T Roellig, I Sakon, J Staguhn, K Stevenson

Wide-Field Near Infrared Imaging

Chapter in , World Scientific Publishing (2021) 175-185

The SAMI Galaxy Survey: stellar population and structural trends across the Fundamental Plane

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 504:4 (2021) 5098-5130

Authors:

Francesco D’Eugenio, Matthew Colless, Nicholas Scott, Arjen van der Wel, Roger L Davies, Jesse van de Sande, Sarah M Sweet, Sree Oh, Brent Groves, Rob Sharp, Matt S Owers, Joss Bland-Hawthorn, Scott M Croom, Sarah Brough, Julia J Bryant, Michael Goodwin, Jon S Lawrence, Nuria PF Lorente, Samuel N Richards

Supernova neutrino burst detection with the Deep Underground Neutrino Experiment

The European Physical Journal C SpringerOpen 81:5 (2021) 423

Authors:

B Abi, R Acciarri, MA Acero, G Adamov, D Adams, M Adinolfi, Z Ahmad, J Ahmed, T Alion, S Alonso Monsalve, C Alt, J Anderson, C Andreopoulos, MP Andrews, F Andrianala, S Andringa, A Ankowski, M Antonova, S Antusch, A Aranda-Fernandez, A Ariga, LO Arnold, MA Arroyave, J Asaadi, A Aurisano, V Aushev, D Autiero, F Azfar, H Back, JJ Back, C Backhouse, P Baesso, L Bagby, R Bajou, S Balasubramanian, P Baldi, B Bambah, F Barao, G Barenboim, GJ Barker, W Barkhouse, C Barnes, G Barr, J Barranco Monarca, N Barros, JL Barrow, A Bashyal, V Basque, F Bay, JL Bazo Alba

Abstract:

We investigate the feasibility of using deep learning techniques, in the form of a one-dimensional convolutional neural network (1D-CNN), for the extraction of signals from the raw waveforms produced by the individual channels of liquid argon time projection chamber (LArTPC) detectors. A minimal generic LArTPC detector model is developed to generate realistic noise and signal waveforms used to train and test the 1D-CNN, and evaluate its performance on low-level signals. We demonstrate that our approach overcomes the inherent shortcomings of traditional cut-based methods by extending sensitivity to signals with ADC values below their imposed thresholds. This approach exhibits great promise in enhancing the capabilities of future generation neutrino experiments like DUNE to carry out their low-energy neutrino physics programs