Black Hole-Galaxy Scaling Relation Evolution From z~2.5: Simulated Observations With HARMONI on the ELT

Frontiers in Astronomy and Space Sciences Frontiers 6 (2019) 73

Authors:

Begoña García-Lorenzo, Ana Monreal-Ibero, Evencio Mediavilla, Miguel Pereira-Santaella, Niranjan Thatte

A few StePS forward in unveiling the complexity of galaxy evolution: light-weighted stellar ages of intermediate-redshift galaxies with WEAVE

Astronomy and Astrophysics EDP Sciences 632 (2019) A9

Authors:

L Costantin, A Iovino, S Zibetti, M Longhetti, A Gallazzi, A Mercurio, I Lonoce, M Balcells, M Bolzonella, G Busarello, G Dalton, A Ferre-Mateu, R Garcia-Benito, A Gargiulo, C Haines, S Jin, F La Barbera, S Mcgee, P Merluzzi, L Morelli, DNA Murphy, Peralta de Arriba L de Arriba, A Pizzella, BM Poggianti, L Pozzetti, P Sanchez-Blazquez, M Talia, C Tortora, SC Trager, A Vazdekis, D Vergani, B Vulcani

Abstract:


Context. The upcoming new generation of optical spectrographs on four-meter-class telescopes, with their huge multiplexing capabilities, excellent spectral resolution, and unprecedented wavelength coverage, will provide invaluable information for reconstructing the history of star formation in individual galaxies up to redshifts of about 0.7.

Aims. We aim at defining simple but robust and meaningful physical parameters that can be used to trace the coexistence of widely diverse stellar components: younger stellar populations superimposed on the bulk of older ones.

Methods. We produced spectra of galaxies closely mimicking data from the forthcoming Stellar Populations at intermediate redshifts Survey (StePS), a survey that uses the WEAVE spectrograph on the William Herschel Telescope. First, we assessed our ability to reliably measure both ultraviolet and optical spectral indices in galaxies of different spectral types for typically expected signal-to-noise ratios. We then analyzed such mock spectra with a Bayesian approach, deriving the probability density function of r- and u-band light-weighted ages as well as of their difference.

Results. We find that the ultraviolet indices significantly narrow the uncertainties in estimating the r- and u-band light-weighted ages and their difference in individual galaxies. These diagnostics, robustly retrievable for large galaxy samples even when observed at moderate signal-to-noise ratios, allow us to identify secondary episodes of star formation up to an age of ∼0.1 Gyr for stellar populations older than ∼1.5 Gyr, pushing up to an age of ∼1 Gyr for stellar populations older than ∼5 Gyr.

Conclusions. The difference between r-band and u-band light-weighted ages is shown to be a powerful diagnostic to characterize and constrain extended star-formation histories and the presence of young stellar populations on top of older ones. This parameter can be used to explore the interplay between different galaxy star-formation histories and physical parameters such as galaxy mass, size, morphology, and environment.

High angular resolution ALMA images of dust and molecules in the SN 1987A ejecta

Astrophysical Journal American Astronomical Society 886:1 (2019) 51

Authors:

P Cigan, M Matsuura, HL Gomez, R Indebetouw, Patrick Roche

Abstract:

We present high angular resolution (~80 mas) ALMA continuum images of the SN 1987A system, together with CO J = 2 $\to $ 1, J = 6 $\to $ 5, and SiO J = 5 $\to $ 4 to J = 7 $\to $ 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in Hα images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO J = 6 $\to $ 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO J = 6 $\to $ 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO J = 2 $\to $ 1 and SiO J = 5 $\to $ 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared–millimeter spectral energy distribution give ejecta dust temperatures of 18–23 K. We revise the ejecta dust mass to M dust = 0.2–0.4 ${M}_{\odot }$ for carbon or silicate grains, or a maximum of <0.7 ${M}_{\odot }$ for a mixture of grain species, using the predicted nucleosynthesis yields as an upper limit.

The C-Band All-Sky Survey (C-BASS): Simulated parametric fitting in single pixels in total intensity and polarization

Monthly Notices of the Royal Astronomical Society Oxford University Press 490:2 (2019) 2958-2975

Authors:

Luke Jew, AC Taylor, Michael Jones, A Barr, HC Chiang, C Dickinson, RDP Grumitt, HM Heilgendorff, J Hill-Valler, JL Jonas, JP Leahy, J Leech, TJ Pearson, MW Peel, ACS Readhead, J Sievers

Abstract:

The cosmic microwave background (CMB) B-mode signal is potentially weaker than the diffuse Galactic foregrounds over most of the sky at any frequency. A common method of separating the CMB from these foregrounds is via pixel-based parametric-model fitting. There are not currently enough all-sky maps to fit anything more than the most simple models of the sky. By simulating the emission in seven representative pixels, we demonstrate that the inclusion of a 5 GHz data point allows for more complex models of low-frequency foregrounds to be fitted than at present. It is shown that the inclusion of the C-BASS data will significantly reduce the uncertainties in a number of key parameters in the modelling of both the galactic foregrounds and the CMB. The extra data allow estimates of the synchrotron spectral index to be constrained much more strongly than is presently possible, with corresponding improvements in the accuracy of the recovery of the CMB amplitude. However, we show that to place good limits on models of the synchrotron spectral curvature will require additional low-frequency data.

A few StePS forward in unveiling the complexity of galaxy evolution: light-weighted stellar ages of intermediate redshift galaxies with WEAVE

(2019)

Authors:

L Costantin, A Iovino, S Zibetti, M Longhetti, A Gallazzi, A Mercurio, I Lonoce, M Balcells, M Bolzonella, G Busarello, G Dalton, A Ferré-Mateu, R García-Benito, A Gargiulo, C Haines, S Jin, F La Barbera, S McGee, P Merluzzi, L Morelli, DNA Murphy, L Peralta de Arriba, A Pizzella, BM Poggianti, L Pozzetti, P Sánchez-Blázquez, M Talia, C Tortora, SC Trager, A Vazdekis, D Vergani, B Vulcani