WAS: The archive for the WEAVE spectrograph
Proceedings of SPIE - The International Society for Optical Engineering 10015 (2018)
The C-Band All-Sky Survey (C-BASS): design and capabilities
Monthly Notices of the Royal Astronomical Society Oxford University Press 480:3 (2018) 3224-3242
Abstract:
The C-Band All-Sky Survey (C-BASS) is an all-sky full-polarization survey at a frequency of 5 GHz, designed to provide complementary data to the all-sky surveys of WMAP and Planck, and future CMB B-mode polarization imaging surveys. The observing frequency has been chosen to provide a signal that is dominated by Galactic synchrotron emission, but suffers little from Faraday rotation, so that the measured polarization directions provide a good template for higher frequency observations, and carry direct information about the Galactic magnetic field. Telescopes in both northern and southern hemispheres with matched optical performance are used to provide all-sky coverage from a ground-based experiment. A continuous-comparison radiometer and a correlation polarimeter on each telescope provide stable imaging properties such that all angular scales from the instrument resolution of 45 arcmin up to full sky are accurately measured. The northern instrument has completed its survey and the southern instrument has started observing. We expect that C-BASS data will significantly improve the component separation analysis of Planck and other CMB data, and will provide important constraints on the properties of anomalous Galactic dust and the Galactic magnetic field.Construction progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope
Proceedings Volume 10702, Ground-based and Airborne Instrumentation for Astronomy VII Society of Photo-optical Instrumentation Engineers 10702 (2018)
Abstract:
We present an update on the overall construction progress of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations, and some detailed end-to-end science simulations that have been effected to evaluate the final on-sky performance after data processing. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project has experienced some delays in procurement and now has first light expected for the middle of 2019.High resolution imaging of the magnetic field in the central parsec of the Galaxy
Planetary and Space Science Elsevier 183 (2018) 104578
Abstract:
We discuss a high resolution (FWHM∼ 0:45 arcsec) image of the emissive polarization from warm dust in the minispiral in the Galactic Centre and discuss the implications for the magnetic field in the dusty filaments. The image was obtained at a wavelength of 12.5 μm with the CanariCam multimode mid-infrared imager on the Gran Telescopio Canarias. It confirms the results obtained from previous observations but also reveals new details of the polarization structures. In particular, we identify regions of coherent magnetic field emission at position angles of ∼ 45o to the predominantly north–south run of field lines in the Northern Arm which may be related to orbital motions inclined to the general flow of the Northern Arm. The luminous stars that have been identified as bow-shock sources in the Northern Arm do not disrupt or dilute the field but are linked by a coherent field structure, implying that the winds from these objects may push and compress the field but do not overwhelm it. The magnetic field in the low surface brightness regions in the East-West Bar to the south of SgrA* lies along the Bar, but the brighter regions generally have different polarization position angles, suggesting that they are distinct structures. In the region of the Northern Arm sampled here, there is only a weak correlation between the intensity of the emission and the degree of polarization. This is consistent with saturated grain alignment where the degree of polarization depends on geometric effects, including the angle of inclination of the field to the line of sight and superposition of filaments with different field directions, rather than the alignment efficiency.Opto-mechanical designs for the HARMONI adaptive optics systems
Proceedings of SPIE SPIE 10703 (2018)