Nuclear molecular outflow in the Seyfert galaxy NGC 3227

Astronomy and Astrophysics EDP Sciences 628 (2019) A65

Authors:

A Alonso Herrero, S García-Burillo, Miguel Pereira-Santaella, RI Davies, F Combes, M Vestergaard, SI Raimundo, Andrew Bunker, T Díaz-Santos, P Gandhi, I García-Bernete, EKS Hicks, SF Hönig, LK Hunt, M Imanishi, T Izumi, NA Levenson, W Maciejewski1, C Packham, C Ramos Almeida, C Ricci, Dimitra Rigopoulou, Patrick Roche, D Rosario, M Schartmann, A Usero, MJ Ward

Abstract:

ALMA observations have revealed nuclear dusty molecular disks or tori with characteristic sizes 15−40 pc in the few Seyferts and low -luminosity AGN that have been studied so far. These structures are generally decoupled both morphologically and kinematically from the host galaxy disk. We present ALMA observations of the CO(2–1) and CO(3–2) molecular gas transitions and associated (sub-) millimeter continua of the nearby Seyfert 1.5 galaxy NGC 3227 with angular resolutions 0.085 − 0.21″ (7–15 pc). On large scales, the cold molecular gas shows circular motions as well as streaming motions on scales of a few hundred parsecs that are associated with a large-scale bar. We fit the nuclear ALMA 1.3 mm emission with an unresolved component and an extended component. The 850 μm emission shows at least two extended components, one along the major axis of the nuclear disk, and the other along the axis of the ionization cone. The molecular gas in the central region (1″ ∼ 73 pc) shows several CO clumps with complex kinematics that appears to be dominated by noncircular motions. While we cannot conclusively demonstrate the presence of a warped nuclear disk, we also detected noncircular motions along the kinematic minor axis. They reach line-of-sight velocities of v − vsys = 150 − 200 km s−1. Assuming that the radial motions are in the plane of the galaxy, we interpret them as a nuclear molecular outflow due to molecular gas in the host galaxy that is entrained by the AGN wind. We derive molecular outflow rates of 5 M⊙ yr−1 and 0.6 M⊙ yr−1 at projected distances of up to 30 pc to the northeast and southwest of the AGN, respectively. At the AGN location we estimate a mass in molecular gas of 5 × 105 M⊙ and an equivalent average column density N(H2) = 2 − 3 × 1023 cm−2 in the inner 15 pc. The nuclear CO(2–1) and CO(3–2) molecular gas and submillimeter continuum emission of NGC 3227 do not resemble the classical compact torus. Rather, these emissions extend for several tens of parsecs and appear connected with the circumnuclear ring in the host galaxy disk, as found in other local AGN.

ESA Voyage 2050 White Paper: Detecting life outside our solar system with a large high-contrast-imaging mission

arXiv e-prints (2019) arXiv:1908.01803-arXiv:1908.01803

Authors:

Ignas Snellen, Simon Albrecht, Guillem Anglada-Escude, Isabelle Baraffe, Pierre Baudoz, Willy Benz, Jean-Luc Beuzit, Beth Biller, Jayne Birkby, Anthony Boccaletti, Roy van Boekel, Jos de Boer, Matteo Brogi, Lars Buchhave, Ludmila Carone, Mark Claire, Riccardo Claudi, Brice-Olivier Demory, Jean-Michel Desert, Silvano Desidera, Scott Gaudi, Raffaele Gratton, Michael Gillon, John Lee Grenfell, Olivier Guyon, Thomas Henning, Sasha Hinkley, Elsa Huby, Markus Janson, Christiane Helling, Kevin Heng, Markus Kasper, Christoph Keller, Matthew Kenworthy, Oliver Krause, Laura Kreidberg, Nikku Madhusudhan, Anne-Marie Lagrange, Ralf Launhardt, Tim Lenton, Manuel Lopez-Puertas, Anne-Lise Maire, Nathan Mayne, Victoria Meadows, Bertrand Mennesson, Giuseppina Micela, Yamila Miguel, Julien Milli, Michiel Min, Ernst de Mooij, David Mouillet, Mamadou N’Diaye, Valentina D’Orazi, Enric Palle, Isabella Pagano, Giampaolo Piotto, Didier Queloz, Heike Rauer, Ignasi Ribas, Garreth Ruane, Franck Selsis, Frans Snik, Alessandro Sozzetti, Daphne Stam, Christopher Stark, Arthur Vigan, Pieter de Visser

Better support for collaborations preparing for large-scale projects: the case study of the LSST Science Collaborations Astro2020 APC White Paper

(2019)

Authors:

Federica B Bianco, Manda Banerji, John Bochanski, William N Brandt, Patricia Burchat, John Gizis, Zeljko Ivezić, Charles Keaton, Sugata Kaviraj, Tom Loredo, Rachel Mandelbaum, Phil Marshall, Peregrine McGehee, Chad Schafer, Megan E Schwamb, Jennifer L Sokoloski, Michael A Strauss, Rachel Street, David Trilling, Aprajita Verma

Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope

Nature Reviews Physics Springer Nature 1:7 (2019) 450-462

Authors:

Brant E Robertson, Manda Banerji, Sarah Brough, Roger L Davies, Henry C Ferguson, Ryan Hausen, Sugata Kaviraj, Jeffrey A Newman, Samuel J Schmidt, J Anthony Tyson, Risa H Wechsler

Optical integral field spectroscopy of intermediate redshift infrared bright galaxies

Monthly Notices of the Royal Astronomical Societ Oxford University Press 486:4 (2019) 5621-5645

Authors:

Miguel Pereira-Santaella, Dimitra Rigopoulou, GE Magdis, Niranjan Thatte, A Alonso-Herrero, F Clarke, D Farrah, S García-Burillo, L Hogan, S Morris, M Rodrigues, J-S Huang, Matthias Tecza

Abstract:

The extreme infrared (IR) luminosity of local luminous and ultraluminous IR galaxies (U/LIRGs; 11 < logLIR/L < 12 and logLIR/L > 12, respectively) is mainly powered by star formation processes triggered by mergers or interactions. While U/LIRGs are rare locally, at z > 1, they become more common, dominate the star formation rate (SFR) density, and a fraction of them are found to be normal disc galaxies. Therefore, there must be an evolution of the mechanism triggering these intense starbursts with redshift. To investigate this evolution, we present new optical SWIFT integral field spectroscopic H α + [N II] observations of a sample of nine intermediate-z (0.2