Interstellar medium conditions in z similar to 0.2 Lyman-break analogs

ASTRONOMY & ASTROPHYSICS 606 (2017) ARTN A86

Authors:

A Contursi, AJ Baker, S Berta, B Magnelli, D Lutz, J Fischer, A Verma, M Nielbock, JG Carpio, S Veilleux, E Sturm, R Davies, R Genzel, S Hailey-Dunsheath, R Herrera-Camus, A Janssen, A Poglitsch, A Sternberg, LJ Tacconi

The KMOS Cluster Survey (KCS). I. The fundamental plane and the formation ages of cluster galaxies at redshift 1.4 < Z < 1.6

Astrophysical Journal American Astronomical Society 846:2 (2017) 1-25

Authors:

A Beifiori, JT Mendel, JCC Chan, RP Saglia, R Bender, Michele Cappellari, Roger L Davies, A Galametz, Ryan CW Houghton, Laura J Prichard, R Smith, John P Stott, DJ Wilman, Ian J Lewis, R Sharples, M Wegner

Abstract:

The American Astronomical Society. All rights reserved. We present the analysis of the fundamental plane (FP) for a sample of 19 massive red-sequence galaxies (M· > ×4 10 10 M·) in three known overdensities at 1.39 1.61 < < z from the K-band Multi-object Spectrograph (KMOS) Cluster Survey, a guaranteed-time program with spectroscopy from the KMOS at the VLT and imaging from the Hubble Space Telescope. As expected, we find that the FP zero-point in B band evolves with redshift, from the value 0.443 of Coma to -0.10±0.09, -0.19±0.05, and -0.29±0.12 for our clusters at z = 1.39, z = 1.46, and z = 1.61, respectively. For the most massive galaxies (log 1 M M· > 1) in our sample, we translate the FP zero-point evolution into a mass-to-light-ratio M/L evolution, finding D log 0.46 0.10 M L z B = - (D log )0.52 0.07 M L z B = -to(D log ) 0.55 0.10 M L z B = - respectively. We assess the potential contribution of the galaxy structural and stellar velocity dispersion evolution to the evolution of the FP zero-point and find it to be ∼6%-35% of the FP zero-point evolution. The rate of M/L evolution is consistent with galaxies evolving passively. Using single stellar population models, we find an average age of 2.33- +0.51 0.86 Gyr for the log 1 M M· > 1 galaxies in our massive and virialized cluster at z = 1.39,1.59- +0.62 1.40 Gyr in a massive but not virialized cluster at z = 1.46, and 1.20- +0.47 1.03 Gyr in a protocluster at z = 1.61. After accounting for the difference in the age of the universe between redshifts, the ages of the galaxies in the three overdensities are consistent within the errors, with possibly a weak suggestion that galaxies in the most evolved structure are older.

The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission line galaxies at $z\sim 1.4$

(2017)

Authors:

Motonari Tonegawa, Teppei Okumura, Tomonori Totani, Gavin Dalton, Karl Glazebrook, Kiyoto Yabe

Large Synoptic Survey Telescope Galaxies Science Roadmap

(2017)

Authors:

Brant E Robertson, Manda Banerji, Michael C Cooper, Roger Davies, Simon P Driver, Annette MN Ferguson, Henry C Ferguson, Eric Gawiser, Sugata Kaviraj, Johan H Knapen, Chris Lintott, Jennifer Lotz, Jeffrey A Newman, Dara J Norman, Nelson Padilla, Samuel J Schmidt, Graham P Smith, J Anthony Tyson, Aprajita Verma, Idit Zehavi, Lee Armus, Camille Avestruz, L Felipe Barrientos, Rebecca AA Bowler, Malcom N Bremer, Christopher J Conselice, Jonathan Davies, Ricardo Demarco, Mark E Dickinson, Gaspar Galaz, Andrea Grazian, Benne W Holwerda, Matt J Jarvis, Vishal Kasliwal, Ivan Lacerna, Jon Loveday, Phil Marshall, Emiliano Merlin, Nicola R Napolitano, Thomas H Puzia, Aaron Robotham, Samir Salim, Mauro Sereno, Gregory F Snyder, John P Stott, Patricia B Tissera, Norbert Werner, Peter Yoachim, Kirk D Borne, Members of the LSST Galaxies Science Collaboration

Large sSynoptic Survey Telescope Galaxies Science Roadmap

(2017)

Authors:

BE Robertson, M Banerji, MC Cooper, Roger Davies, SP Driver, Ferguson, HC Ferguson, E Gawiser, S Kaviraj, JH Knapen, Chris Lintott, J Lotz, JA Newman, DJ Norman, N Padilla, SJ Schmidt, GP Smith, JA Tyson, Aprajita Verma, I Zehavi, L Armus, C Avestruz, LF Barrientos, Rebecca AA Bowler, MN Bremer, CJ Conselice, J Davies, R Demarco, ME Dickinson, G Galaz, A Grazian, BW Holwerda, Matthew Jarvis, V Kasliwal, I Lacerna, J Loveday, P Marshall, E Merlin, NR Napolitano, TH Puzia, A Robotham, S Salim, M Sereno, GF Snyder, JP Stott, PB Tissera, N Werner, P Yoachim, KD Borne

Abstract:

The Large Synoptic Survey Telescope (LSST) will enable revolutionary studies of galaxies, dark matter, and black holes over cosmic time. The LSST Galaxies Science Collaboration has identified a host of preparatory research tasks required to leverage fully the LSST dataset for extragalactic science beyond the study of dark energy. This Galaxies Science Roadmap provides a brief introduction to critical extragalactic science to be conducted ahead of LSST operations, and a detailed list of preparatory science tasks including the motivation, activities, and deliverables associated with each. The Galaxies Science Roadmap will serve as a guiding document for researchers interested in conducting extragalactic science in anticipation of the forthcoming LSST era.