EDGE: a new approach to suppressing numerical diffusion in adaptive mesh simulations of galaxy formation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 501:2 (2020) 1755-1765

Authors:

Andrew Pontzen, Martin P Rey, Corentin Cadiou, Oscar Agertz, Romain Teyssier, Justin Read, Matthew DA Orkney

Abstract:

ABSTRACT We introduce a new method to mitigate numerical diffusion in adaptive mesh refinement (AMR) simulations of cosmological galaxy formation, and study its impact on a simulated dwarf galaxy as part of the ‘EDGE’ project. The target galaxy has a maximum circular velocity of $21\, \mathrm{km}\, \mathrm{s}^{-1}$ but evolves in a region that is moving at up to $90\, \mathrm{km}\, \mathrm{s}^{-1}$ relative to the hydrodynamic grid. In the absence of any mitigation, diffusion softens the filaments feeding our galaxy. As a result, gas is unphysically held in the circumgalactic medium around the galaxy for $320\, \mathrm{Myr}$, delaying the onset of star formation until cooling and collapse eventually triggers an initial starburst at z = 9. Using genetic modification, we produce ‘velocity-zeroed’ initial conditions in which the grid-relative streaming is strongly suppressed; by design, the change does not significantly modify the large-scale structure or dark matter accretion history. The resulting simulation recovers a more physical, gradual onset of star formation starting at z = 17. While the final stellar masses are nearly consistent ($4.8 \times 10^6\, \mathrm{M}_{\odot }$ and $4.4\times 10^6\, \mathrm{M}_{\odot }$ for unmodified and velocity-zeroed, respectively), the dynamical and morphological structure of the z = 0 dwarf galaxies are markedly different due to the contrasting histories. Our approach to diffusion suppression is suitable for any AMR zoom cosmological galaxy formation simulations, and is especially recommended for those of small galaxies at high redshift.

The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz

Journal of Cosmology and Astroparticle Physics IOP Publishing 2020:12 (2020) 045-045

Authors:

Steve K Choi, Matthew Hasselfield, Shuay-Pwu Patty Ho, Brian Koopman, Marius Lungu, Maximilian H Abitbol, Graeme E Addison, Peter AR Ade, Simone Aiola, David Alonso, Mandana Amiri, Stefania Amodeo, Elio Angile, Jason E Austermann, Taylor Baildon, Nick Battaglia, James A Beall, Rachel Bean, Daniel T Becker, J Richard Bond, Sarah Marie Bruno, Erminia Calabrese, Victoria Calafut, Luis E Campusano, Grace E Chesmore

The Atacama Cosmology Telescope: DR4 maps and cosmological parameters

Journal of Cosmology and Astroparticle Physics IOP Publishing 2020:12 (2020) 047-047

Authors:

Simone Aiola, Erminia Calabrese, Loïc Maurin, Sigurd Naess, Benjamin L Schmitt, Maximilian H Abitbol, Graeme E Addison, Peter AR Ade, David Alonso, Mandana Amiri, Stefania Amodeo, Elio Angile, Jason E Austermann, Taylor Baildon, Nick Battaglia, James A Beall, Rachel Bean, Daniel T Becker, J Richard Bond, Sarah Marie Bruno, Victoria Calafut, Luis E Campusano, Felipe Carrero, Grace E Chesmore, Nicholas F Cothard

Abstract:

We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013-2016 at 98 and 150 GHz. The maps cover more than 17,000 deg$^2$, the deepest 600 deg$^2$ with noise levels below 10 $\mu$K-arcmin. We use the power spectrum derived from almost 6,000 deg$^2$ of these maps to constrain cosmology. The ACT data enable a measurement of the angular scale of features in both the divergence-like polarization and the temperature anisotropy, tracing both the velocity and density at last-scattering. From these one can derive the distance to the last-scattering surface and thus infer the local expansion rate, $H_0$. By combining ACT data with large-scale information from WMAP we measure $H_0 = 67.6 \pm 1.1$ km/s/Mpc, at 68% confidence, in excellent agreement with the independently-measured Planck satellite estimate (from ACT alone we find $H_0 = 67.9 \pm 1.5$ km/s/Mpc). The $\Lambda$CDM model provides a good fit to the ACT data, and we find no evidence for deviations: both the spatial curvature, and the departure from the standard lensing signal in the spectrum, are zero to within 1$\sigma$; the number of relativistic species, the primordial Helium fraction, and the running of the spectral index are consistent with $\Lambda$CDM predictions to within $1.5 - 2.2\sigma$. We compare ACT, WMAP, and Planck at the parameter level and find good consistency; we investigate how the constraints on the correlated spectral index and baryon density parameters readjust when adding CMB large-scale information that ACT does not measure. The DR4 products presented here will be publicly released on the NASA Legacy Archive for Microwave Background Data Analysis.

The Atacama Cosmology Telescope: DR4 maps and cosmological parameters

Journal of Cosmology and Astroparticle Physics IOP Publishing 2020:12 (2020) 047-047

Authors:

Simone Aiola, Erminia Calabrese, Loïc Maurin, Sigurd Naess, Benjamin L Schmitt, Maximilian H Abitbol, Graeme E Addison, Peter AR Ade, David Alonso, Mandana Amiri, Stefania Amodeo, Elio Angile, Jason E Austermann, Taylor Baildon, Nick Battaglia, James A Beall, Rachel Bean, Daniel T Becker, J Richard Bond, Sarah Marie Bruno, Victoria Calafut, Luis E Campusano, Felipe Carrero, Grace E Chesmore, Hsiao-mei Cho, Steve K Choi, Susan E Clark, Nicholas F Cothard, Devin Crichton, Kevin T Crowley, Omar Darwish, Rahul Datta, Edward V Denison, Mark J Devlin, Cody J Duell, Shannon M Duff, Adriaan J Duivenvoorden, Jo Dunkley, Rolando Dünner, Thomas Essinger-Hileman, Max Fankhanel, Simone Ferraro, Anna E Fox, Brittany Fuzia, Patricio A Gallardo, Vera Gluscevic, Joseph E Golec, Emily Grace, Megan Gralla, Yilun Guan

Abstract:

We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013-2016 at 98 and 150 GHz. The maps cover more than 17,000 deg$^2$, the deepest 600 deg$^2$ with noise levels below 10 $\mu$K-arcmin. We use the power spectrum derived from almost 6,000 deg$^2$ of these maps to constrain cosmology. The ACT data enable a measurement of the angular scale of features in both the divergence-like polarization and the temperature anisotropy, tracing both the velocity and density at last-scattering. From these one can derive the distance to the last-scattering surface and thus infer the local expansion rate, $H_0$. By combining ACT data with large-scale information from WMAP we measure $H_0 = 67.6 \pm 1.1$ km/s/Mpc, at 68% confidence, in excellent agreement with the independently-measured Planck satellite estimate (from ACT alone we find $H_0 = 67.9 \pm 1.5$ km/s/Mpc). The $\Lambda$CDM model provides a good fit to the ACT data, and we find no evidence for deviations: both the spatial curvature, and the departure from the standard lensing signal in the spectrum, are zero to within 1$\sigma$; the number of relativistic species, the primordial Helium fraction, and the running of the spectral index are consistent with $\Lambda$CDM predictions to within $1.5 - 2.2\sigma$. We compare ACT, WMAP, and Planck at the parameter level and find good consistency; we investigate how the constraints on the correlated spectral index and baryon density parameters readjust when adding CMB large-scale information that ACT does not measure. The DR4 products presented here will be publicly released on the NASA Legacy Archive for Microwave Background Data Analysis.

Beyond halo mass: quenching galaxy mass assembly at the edge of filaments

Monthly Notices of the Royal Astronomical Society Oxford University Press 501:3 (2020) 4635-4656

Authors:

H Song, C Laigle, Hs Hwang, J Devriendt, Y Dubois, K Kraljic, C Pichon, A Slyz, R Smith

Abstract:

We examine how the mass assembly of central galaxies depends on their location in the cosmic web. The HORIZON-AGN simulation is analysed at z ∼ 2 using the DISPERSE code to extract multi-scale cosmic filaments. We find that the dependency of galaxy properties on large-scale environment is mostly inherited from the (large-scale) environmental dependency of their host halo mass. When adopting a residual analysis that removes the host halo mass effect, we detect a direct and non-negligible influence of cosmic filaments. Proximity to filaments enhances the build-up of stellar mass, a result in agreement with previous studies. However, our multi-scale analysis also reveals that, at the edge of filaments, star formation is suppressed. In addition, we find clues for compaction of the stellar distribution at close proximity to filaments. We suggest that gas transfer from the outside to the inside of the haloes (where galaxies reside) becomes less efficient closer to filaments, due to high angular momentum supply at the vorticity-rich edge of filaments. This quenching mechanism may partly explain the larger fraction of passive galaxies in filaments, as inferred from observations at lower redshifts.