A unified pseudo-Cℓ framework

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)

Authors:

David Alonso, Javier Sanchez, Anže Slosar

Black hole evolution: II. Spinning black holes in a supernova-driven turbulent interstellar medium

Monthly Notices of the Royal Astronomical Society Oxford University Press 440:3 (2014) 2333-2346

Authors:

Y Dubois, M Volonteri, J Silk, Julien Devriendt, Adrianne Slyz

Abstract:

Supermassive black holes (BH) accrete gas from their surroundings and coalesce with companions during galaxy mergers, and both processes change the BH mass and spin. By means of high-resolution hydrodynamical simulations of galaxies, either idealised or embedded within the cosmic web, we explore the effects of interstellar gas dynamics and external perturbations on BH spin evolution. All these physical quantities were evolved on-the-fly in a self-consistent manner. We use a 'maximal' model to describe the turbulence induced by stellar feedback to highlight its impact on the angular momentum of the gas accreted by the BH. Periods of intense star formation are followed by phases where stellar feedback drives large-scale outflows and hot bubbles. We find that BH accretion is synchronised with star formation, as only when gas is cold and dense do both processes take place. During such periods, gas motion is dominated by consistent rotation. On the other hand, when stellar feedback becomes substantial, turbulent motion randomises gas angular momentum. However BH accretion is strongly suppressed in that case, as cold and dense gas is lacking. In our cosmological simulation, at very early times (z>6), the galactic disc has not yet settled and no preferred direction exists for the angular momentum of the accreted gas, so the BH spin remains low. As the gas settles into a disc (6>z>3), the BH spin then rapidly reaches its maximal value. At lower redshifts (z<3), even when galaxy mergers flip the direction of the angular momentum of the accreted gas, causing it to counter-rotate, the BH spin magnitude only decreases modestly and temporarily. Should this be a typical evolution scenario for BH, it potentially has dramatic consequences regarding their origin and assembly, as accretion on maximally spinning BH embedded in thin Shakura-Sunyaev disc is significantly reduced.

Black hole evolution: II. Spinning black holes in a supernova-driven turbulent interstellar medium

Monthly Notices of the Royal Astronomical Society Oxford University Press 440:3 (2014) 2333-2346

Authors:

Y Dubois, M Volonteri, J Silk, Julien Devriendt, Adrianne Slyz

Abstract:

Supermassive black holes (BH) accrete gas from their surroundings and coalesce with companions during galaxy mergers, and both processes change the BH mass and spin. By means of high-resolution hydrodynamical simulations of galaxies, either idealised or embedded within the cosmic web, we explore the effects of interstellar gas dynamics and external perturbations on BH spin evolution. All these physical quantities were evolved on-the-fly in a self-consistent manner. We use a 'maximal' model to describe the turbulence induced by stellar feedback to highlight its impact on the angular momentum of the gas accreted by the BH. Periods of intense star formation are followed by phases where stellar feedback drives large-scale outflows and hot bubbles. We find that BH accretion is synchronised with star formation, as only when gas is cold and dense do both processes take place. During such periods, gas motion is dominated by consistent rotation. On the other hand, when stellar feedback becomes substantial, turbulent motion randomises gas angular momentum. However BH accretion is strongly suppressed in that case, as cold and dense gas is lacking. In our cosmological simulation, at very early times (z>6), the galactic disc has not yet settled and no preferred direction exists for the angular momentum of the accreted gas, so the BH spin remains low. As the gas settles into a disc (6>z>3), the BH spin then rapidly reaches its maximal value. At lower redshifts (z<3), even when galaxy mergers flip the direction of the angular momentum of the accreted gas, causing it to counter-rotate, the BH spin magnitude only decreases modestly and temporarily. Should this be a typical evolution scenario for BH, it potentially has dramatic consequences regarding their origin and assembly, as accretion on maximally spinning BH embedded in thin Shakura-Sunyaev disc is significantly reduced.

The impact of galaxy bias on cross-correlation tomography

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2125

Authors:

Sara Maleubre, Matteo Zennaro, David Alonso, Ian G McCarthy, Matthieu Schaller, Joop Schaye

Abstract:

Abstract The cross-correlation of galaxies at different redshifts with other tracers of the large-scale structure can be used to reconstruct the cosmic mean of key physical quantities, and their evolution over billions of years, at high precision. However, a correct interpretation of these measurements must ensure that they are independent of the clustering properties of the galaxy sample used. In this paper we explore different prescriptions to extract tomographic reconstruction measurements and use the FLAMINGO hydrodynamic simulations to show that a robust estimator, independent of the small-scale galaxy bias, can be constructed. We focus on the tomographic reconstruction of the halo bias-weighted electron pressure 〈bPe〉 and star-formation density 〈bρSFR〉, which can be reconstructed from tomographic analysis of Sunyaev-Zel’dovich and cosmic infrared background maps, respectively. We show that these quantities can be reconstructed with an accuracy of 1-3% over a wide range of redshifts, using different galaxy samples. We also show that these measurements can be accurately interpreted using the halo model, assuming a sufficiently reliable model can be constructed for the halo mass function, large-scale halo bias, and for the dependence of the physical quantities being reconstructed on halo mass.

On the rapid growth of SMBHs in high-z galaxies: the aftermath of Population III.1 stars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2000

Authors:

Mahsa Sanati, Julien Devriendt, Sergio Martin-Alvarez, Adrianne Slyz, Jonathan C Tan

Abstract:

Abstract Despite the vast amount of energy released by active galactic nuclei (AGN), their role in early galaxy formation and in regulating the growth of supermassive black holes (SMBHs) remains poorly understood. Through new high-resolution zoom-in cosmological simulations, we follow the co-evolution of 105 M⊙ black hole seeds with their host dwarf galaxy. We model ionizing feedback from a Pop III.1 progenitor, applicable to a wide range of internally or externally irradiated SMBH formation scenarios. The simulated suite progressively spans physics ranging from no AGN feedback to more complex setups including thermal, kinetic and radiative feedback – explored for both low and enhanced AGN power. Across all our models, we find that black hole seeds efficiently reach masses of ∼107 M⊙ within a ∼1010 M⊙ halo by z = 8. Although they exhibit notably different mass growth histories, these latter seem unimpeded by the presence of AGN feedback. The simulation including radiative feedback is the most distinct, with super-Eddington episodes driving fast and mass-loaded gas outflows (exceeding 2500 km s−1) up to ∼50 kpc, along with minor stellar mass suppression in the host galaxy. Our measurements are in broad agreement with moderate luminosity quasars recently observed by JWST, producing overmassive black holes (SMBH-to-galaxy mass ratios 0.01 − 1), dynamical masses of ∼109.5 M⊙, stellar masses of ∼108.5 M⊙, and high, though short-lived, Eddington fraction accretion rates. These results advocate for a scenario where AGN feedback allows for rapid SMBH growth during the reionisation era, while driving winds that extend deep into the intergalactic medium – shaping host galaxies as well as more distant surroundings.