A unified pseudo-Cℓ framework

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)

Authors:

David Alonso, Javier Sanchez, Anže Slosar

Black hole evolution: II. Spinning black holes in a supernova-driven turbulent interstellar medium

Monthly Notices of the Royal Astronomical Society Oxford University Press 440:3 (2014) 2333-2346

Authors:

Y Dubois, M Volonteri, J Silk, Julien Devriendt, Adrianne Slyz

Abstract:

Supermassive black holes (BH) accrete gas from their surroundings and coalesce with companions during galaxy mergers, and both processes change the BH mass and spin. By means of high-resolution hydrodynamical simulations of galaxies, either idealised or embedded within the cosmic web, we explore the effects of interstellar gas dynamics and external perturbations on BH spin evolution. All these physical quantities were evolved on-the-fly in a self-consistent manner. We use a 'maximal' model to describe the turbulence induced by stellar feedback to highlight its impact on the angular momentum of the gas accreted by the BH. Periods of intense star formation are followed by phases where stellar feedback drives large-scale outflows and hot bubbles. We find that BH accretion is synchronised with star formation, as only when gas is cold and dense do both processes take place. During such periods, gas motion is dominated by consistent rotation. On the other hand, when stellar feedback becomes substantial, turbulent motion randomises gas angular momentum. However BH accretion is strongly suppressed in that case, as cold and dense gas is lacking. In our cosmological simulation, at very early times (z>6), the galactic disc has not yet settled and no preferred direction exists for the angular momentum of the accreted gas, so the BH spin remains low. As the gas settles into a disc (6>z>3), the BH spin then rapidly reaches its maximal value. At lower redshifts (z<3), even when galaxy mergers flip the direction of the angular momentum of the accreted gas, causing it to counter-rotate, the BH spin magnitude only decreases modestly and temporarily. Should this be a typical evolution scenario for BH, it potentially has dramatic consequences regarding their origin and assembly, as accretion on maximally spinning BH embedded in thin Shakura-Sunyaev disc is significantly reduced.

Black hole evolution: II. Spinning black holes in a supernova-driven turbulent interstellar medium

Monthly Notices of the Royal Astronomical Society Oxford University Press 440:3 (2014) 2333-2346

Authors:

Y Dubois, M Volonteri, J Silk, Julien Devriendt, Adrianne Slyz

Abstract:

Supermassive black holes (BH) accrete gas from their surroundings and coalesce with companions during galaxy mergers, and both processes change the BH mass and spin. By means of high-resolution hydrodynamical simulations of galaxies, either idealised or embedded within the cosmic web, we explore the effects of interstellar gas dynamics and external perturbations on BH spin evolution. All these physical quantities were evolved on-the-fly in a self-consistent manner. We use a 'maximal' model to describe the turbulence induced by stellar feedback to highlight its impact on the angular momentum of the gas accreted by the BH. Periods of intense star formation are followed by phases where stellar feedback drives large-scale outflows and hot bubbles. We find that BH accretion is synchronised with star formation, as only when gas is cold and dense do both processes take place. During such periods, gas motion is dominated by consistent rotation. On the other hand, when stellar feedback becomes substantial, turbulent motion randomises gas angular momentum. However BH accretion is strongly suppressed in that case, as cold and dense gas is lacking. In our cosmological simulation, at very early times (z>6), the galactic disc has not yet settled and no preferred direction exists for the angular momentum of the accreted gas, so the BH spin remains low. As the gas settles into a disc (6>z>3), the BH spin then rapidly reaches its maximal value. At lower redshifts (z<3), even when galaxy mergers flip the direction of the angular momentum of the accreted gas, causing it to counter-rotate, the BH spin magnitude only decreases modestly and temporarily. Should this be a typical evolution scenario for BH, it potentially has dramatic consequences regarding their origin and assembly, as accretion on maximally spinning BH embedded in thin Shakura-Sunyaev disc is significantly reduced.

Dwarf galaxies as a probe of a primordially magnetized Universe

Astronomy and Astrophysics EDP Sciences 690 (2024) A59

Authors:

Mahsa Sanati, Sergio Martin-Alvarez, Jennifer Schober, Yves Revaz, Adrianne Slyz, Julien Devriendt

Abstract:

Aims: The true nature of primordial magnetic fields (PMFs) and their role in the formation of galaxies still remains elusive. To shed light on these unknowns, we investigate their impact by varying two sets of properties: (i) accounting for the effect of PMFs on the initial matter power spectrum, and (ii) accounting for their magneto-hydrodynamical effects on the formation of galaxies. By comparing both we can determine the dominant agent in shaping galaxy evolution.

Methods: We use the magneto-hydrodynamics code RAMSES, to generate multiple new zoom-in simulations for eight different host halos of dwarf galaxies across a wide luminosity range of 103 − 106 L⊙. These halos are selected from a ΛCDM cosmological box, tracking their evolution down to redshift z = 0. We explore a variety of primordial magnetic field (comoving) strengths Bλ ranging from 0.05 to 0.50 nG.

Results: We find magnetic fields in the interstellar medium not only modify star formation in dwarf spheroidal galaxies but also completely prevent the formation of stars in less compact ultra-faints with halo mass and stellar mass below ∼ 2.5 · 109 and 3 · 106 M⊙, respectively. At high redshifts, the impact of PMFs on host halos of dwarf galaxies through the modification of the matter power spectrum is more dominant than the influence of magneto-hydrodynamics in shaping their gaseous structure. Through the amplification of small perturbations ranging in mass from 107 to 109 M⊙ in the ΛCDM+PMFs matter power spectrum, primordial fields expedite the formation of the first dark matter halos, leading to an earlier onset and a higher star formation rate at redshifts z > 12. We investigate the evolution of various energy components and demonstrate that magnetic fields with an initial strength of Bλ ≥ 0.05 nG exhibit a strong growth of magnetic energy, accompanied by a saturation phase, that starts quickly after the growth phase. These trends persist consistently, regardless of the initial conditions, whether it is the classical ΛCDM or modified by PMFs. Lastly, we investigate the impact of PMFs on the present-time observable properties of dwarf galaxies, namely, the half light radius, V-band luminosity, mean metallicity and velocity dispersion profile. We find that PMFs with moderate strengths of Bλ ≤ 0.10 nG show great agreement with the scaling relations of the observed Local group dwarfs. However, stronger fields lead to large sizes and high velocity dispersion.

The expected kinematic matter dipole is robust against source evolution

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) (2024)

Abstract:

Abstract Recent measurements using catalogues of quasars and radio galaxies have shown that the dipole anisotropy in the large-scale distribution of matter is about twice as large as is expected in the standard ΛCDM model, indeed in any cosmology based on the Friedman-Lemaître-Robertson-Walker (FLRW) metric. This expectation is based on the kinematic interpretation of the dipole anisotropy of the cosmic microwave background, i.e. as arising due to our local peculiar velocity. The effect of aberration and Doppler boosting on the projected number counts on the sky of cosmologically distant objects in a flux-limited catalogue can then be calculated and confronted with observations. This fundamental consistency test of FLRW models proposed by Ellis&Baldwin in 1984 was revisited recently arguing that redshift evolution of the sources can significantly affect the expected matter dipole. In this note we demonstrate that the Ellis&Baldwin test is in fact robust to such effects, hence the &gt;5σ dipole anomaly uncovered recently remains an outstanding challenge to the ΛCDM model.