A unified pseudo-Cℓ framework

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)

Authors:

David Alonso, Javier Sanchez, Anže Slosar

Black hole evolution: II. Spinning black holes in a supernova-driven turbulent interstellar medium

Monthly Notices of the Royal Astronomical Society Oxford University Press 440:3 (2014) 2333-2346

Authors:

Y Dubois, M Volonteri, J Silk, Julien Devriendt, Adrianne Slyz

Abstract:

Supermassive black holes (BH) accrete gas from their surroundings and coalesce with companions during galaxy mergers, and both processes change the BH mass and spin. By means of high-resolution hydrodynamical simulations of galaxies, either idealised or embedded within the cosmic web, we explore the effects of interstellar gas dynamics and external perturbations on BH spin evolution. All these physical quantities were evolved on-the-fly in a self-consistent manner. We use a 'maximal' model to describe the turbulence induced by stellar feedback to highlight its impact on the angular momentum of the gas accreted by the BH. Periods of intense star formation are followed by phases where stellar feedback drives large-scale outflows and hot bubbles. We find that BH accretion is synchronised with star formation, as only when gas is cold and dense do both processes take place. During such periods, gas motion is dominated by consistent rotation. On the other hand, when stellar feedback becomes substantial, turbulent motion randomises gas angular momentum. However BH accretion is strongly suppressed in that case, as cold and dense gas is lacking. In our cosmological simulation, at very early times (z>6), the galactic disc has not yet settled and no preferred direction exists for the angular momentum of the accreted gas, so the BH spin remains low. As the gas settles into a disc (6>z>3), the BH spin then rapidly reaches its maximal value. At lower redshifts (z<3), even when galaxy mergers flip the direction of the angular momentum of the accreted gas, causing it to counter-rotate, the BH spin magnitude only decreases modestly and temporarily. Should this be a typical evolution scenario for BH, it potentially has dramatic consequences regarding their origin and assembly, as accretion on maximally spinning BH embedded in thin Shakura-Sunyaev disc is significantly reduced.

Black hole evolution: II. Spinning black holes in a supernova-driven turbulent interstellar medium

Monthly Notices of the Royal Astronomical Society Oxford University Press 440:3 (2014) 2333-2346

Authors:

Y Dubois, M Volonteri, J Silk, Julien Devriendt, Adrianne Slyz

Abstract:

Supermassive black holes (BH) accrete gas from their surroundings and coalesce with companions during galaxy mergers, and both processes change the BH mass and spin. By means of high-resolution hydrodynamical simulations of galaxies, either idealised or embedded within the cosmic web, we explore the effects of interstellar gas dynamics and external perturbations on BH spin evolution. All these physical quantities were evolved on-the-fly in a self-consistent manner. We use a 'maximal' model to describe the turbulence induced by stellar feedback to highlight its impact on the angular momentum of the gas accreted by the BH. Periods of intense star formation are followed by phases where stellar feedback drives large-scale outflows and hot bubbles. We find that BH accretion is synchronised with star formation, as only when gas is cold and dense do both processes take place. During such periods, gas motion is dominated by consistent rotation. On the other hand, when stellar feedback becomes substantial, turbulent motion randomises gas angular momentum. However BH accretion is strongly suppressed in that case, as cold and dense gas is lacking. In our cosmological simulation, at very early times (z>6), the galactic disc has not yet settled and no preferred direction exists for the angular momentum of the accreted gas, so the BH spin remains low. As the gas settles into a disc (6>z>3), the BH spin then rapidly reaches its maximal value. At lower redshifts (z<3), even when galaxy mergers flip the direction of the angular momentum of the accreted gas, causing it to counter-rotate, the BH spin magnitude only decreases modestly and temporarily. Should this be a typical evolution scenario for BH, it potentially has dramatic consequences regarding their origin and assembly, as accretion on maximally spinning BH embedded in thin Shakura-Sunyaev disc is significantly reduced.

How cosmological merger histories shape the diversity of stellar haloes

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 510:3 (2022) 4208-4224

Authors:

Martin P Rey, Tjitske K Starkenburg

Abstract:

ABSTRACT We introduce and apply a new approach to probe the response of galactic stellar haloes to the interplay between cosmological merger histories and galaxy formation physics. We perform dark matter-only, zoomed simulations of two Milky Way-mass hosts and make targeted, controlled changes to their cosmological histories using the genetic modification technique. Populating each history’s stellar halo with a semi-empirical, particle tagging approach then enables a controlled study, with all instances converging to the same large-scale structure, dynamical and stellar mass at z = 0 as their reference. These related merger scenarios alone generate an extended spread in stellar halo mass fractions (1.5 dex) comparable to the observed population, with the largest scatter achieved by growing late (z ≤ 1) major mergers that spread out existing stars to create massive, in-situ dominated stellar haloes. Increasing a last major merger at z ∼ 2 brings more accreted stars into the inner regions, resulting in smaller scatter in the outskirts which are predominantly built by subsequent minor events. Exploiting the flexibility of our semi-empirical approach, we show that the diversity of stellar halo masses across scenarios is reduced by allowing shallower slopes in the stellar mass–halo mass relation for dwarf galaxies, while it remains conserved when central stars are born with hotter kinematics across cosmic time. The merger-dependent diversity of stellar haloes thus responds distinctly to assumptions in modelling the central and dwarf galaxies respectively, opening exciting prospects to constrain star formation and feedback at different galactic mass-scales with the coming generation of deep, photometric observatories.

Galaxy Zoo DECaLS: Detailed visual morphology measurements from volunteers and deep learning for 314 000 galaxies

Monthly Notices of the Royal Astronomical Society 509:3 (2022) 3966-3988

Authors:

M Walmsley, C Lintott, T Géron, S Kruk, C Krawczyk, KW Willett, S Bamford, LS Kelvin, L Fortson, Y Gal, W Keel, KL Masters, V Mehta, BD Simmons, R Smethurst, L Smith, EM Baeten, C MacMillan

Abstract:

We present Galaxy Zoo DECaLS: detailed visual morphological classifications for Dark Energy Camera Legacy Survey images of galaxies within the SDSS DR8 footprint. Deeper DECaLS images (r = 23.6 versus r = 22.2 from SDSS) reveal spiral arms, weak bars, and tidal features not previously visible in SDSS imaging. To best exploit the greater depth of DECaLS images, volunteers select from a new set of answers designed to improve our sensitivity to mergers and bars. Galaxy Zoo volunteers provide 7.5 million individual classifications over 314 000 galaxies. 140 000 galaxies receive at least 30 classifications, sufficient to accurately measure detailed morphology like bars, and the remainder receive approximately 5. All classifications are used to train an ensemble of Bayesian convolutional neural networks (a state-of-the-art deep learning method) to predict posteriors for the detailed morphology of all 314 000 galaxies. We use active learning to focus our volunteer effort on the galaxies which, if labelled, would be most informative for training our ensemble. When measured against confident volunteer classifications, the trained networks are approximately 99 per cent accurate on every question. Morphology is a fundamental feature of every galaxy; our human and machine classifications are an accurate and detailed resource for understanding how galaxies evolve.